

Applications Programmer's Section, continued

SPECIAL INSTRUCTION FORMS NOT PROVIDED
BY THE MACRO SET

The low-level interface presented in this chapter
allows for some interesting possibilities not offered
by the macro set. Be forewarned, however, that most
WTL 3167 software emulation packages will not dupli­
cate the functionality of the low-level interface. Thus,
if there is the possibility that your program will run in a
system that emulates the WTL 3167 in software, you
should restrict yourself to the standard forms of the
macro set.

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Single-precision vector arithmetic is accomplished by
applying the 80386 block move instruction REP
MOVSD to a WTL 3167 address involving arithmetic
instead of loading or storing. For example, the follow­
ing instruction sequence multiplies each element of the
doubleword array VECTOR in 80386 memory, into the
corresponding element of the WTL 3167 register array
ws 11 through ws20:

MOV ECX, 10
MOV ESI, OFFSET VECTOR

load the number of elements of the vector array
point to the memory vector

MOV EDI, OFFSET MUL.S[T10] point to the WFMUL address for ws 10
REP MOVSD multiply each VECTOR element into a WTL 3167 register

Figure 40.

Similarly, the REP STOSD instruction could be used to
fill an array of WTL 3167 registers with the same
value, or to perform arithmetic of the same value ap­
plied to consecutive WTL 3167 registers. For example,
the following sequence clears the entire WTL 3167
register set to zero:

SUB EAX, EAX
MOV ECX, 32
MOV EDI, OFFSET LOAD.S[TO]

; integer 0 is also floating-point 0
; there are 32 registers to fill
; first STOSD will load EAX=O to wsO

REP STOSD ; load each WTL 1167 register with a zero value

Figure 41.

The following sequence multiplies each of the registers
ws 11 through ws 18 by two:

MOV EAX, 40000000h
MOV ECX, 8
MOV EDI, OFFSET MUL. S [T11]
REP STOSD

Figure 42.

; load single-precision" 2.0" into EAX
; there are 8 registers to multiply
; first STOSD will multiply EAX into ws11
; multiply each of 8 registers by EAX

35
© Copyright WEITEK 1988

All Rights Reserved

Applications Programmer's Section, continued

PHYSICAL VERSUS LOGICAL ADDRESSES

The 80386 has three distinct address spaces: logical,
linear, and physical. A logical address consists of a se­
lector and an offset. The segmentation unit translates
the logical address space into a 32-bit linear address
space. If the paging unit is not enabled, then the 32-bit
linear address corresponds to the physical address.
Otherwise, the paging unit translates the linear address
space into the physical address space. The physical ad­
dress is what appears on the address pins and is re­
sponsible for specifying WTL 3167 instructions. (For
more details refer to the Intel 80386 data sheet and
the 80386 Programmer's Reference Manual). The
logical to physical address translation is fully transpar­
ent to the applications programmer. Applications pro­
grammers need only to know which logical addresses
will be mapped into WTL 3167 physical addresses.

WTL 3167 MS-DOS REAL MODE ADDRESSING

This paragraph describes how logical addresses are
mapped into physical addresses for the WTL 3167 in
the MS-DOS environment. OEMs that support the
WTL 3167 under real mode MS-DOS must implement
the same address translation scheme described in this
paragraph.

While the 8086 can form addresses only up to 20 bits
long, the 80386 has access to 21 bits in real-address

mode. For example, assuming a selector value equal
to OFFFF hex and an offset of OFFFF hex, in real
mode the effective address would be 10FFEF hex
(Selector x 6 + Offset = FFFFO hex + FFFF hex =
10FFEF hex). The 8086 would truncate the high or­
der bit, wrapping this address to OFFEF hex, while
the 80386 would preserve the entire 21 bits. 80386 us­
ers then have access to extra 65520 bytes of memory
that do not conflict with the traditional one megabyte
address range for MS-DOS. Such extra memory is
enough to accommodate the WEITEK coprocessor.

In MS-DOS the WTL 3167 resides at logical base ad­
dress 100000 hex with instructions mapped into ad­
dresses 100000 hex to 10EFFF hex. The 80386 paging
unit is then used to map logical addresses 100000 hex
through 10EFFF hex to the physical address space
ranging from COOOOOOO hex through COOOEFFF hex.
More details on how to implement this address transla­
tion scheme are presented in the Systems Program­
mer's Section. Thanks to this address translation, real
mode programs can access the WTL 3167 coproces­
sor. MS-DOS applications can address the WTL 3167
by setting a segment register (for example fs) to
FFFF hex, adding an address offset of 0010 hex (to
access base address 100000 hex), then executing move
instructions that generate coprocessor addresses be­
tween 100000 hex and 10EFFF hex.

r--------------------------------

Offset
Calculation

t--

Linear
Segmentation AddJess Paging

Selector Unit ' 32 Unit

__________________ ~ _____________ J

Figure 43. Address translation

© Copyright WEITEK 1988
All Rights Reserved 36

Physical
Add~ess WTL

' 32 3167

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Applications Programmer's Section, continued

Assuming that the single-precision add instruction of
registers ws1 and ws2 has to be coded under MS-DOS,
the following instruction would do:

mov FFFF:0019h, al

The address FFFF:0019h is derived as follows:

COPROCESSOR SEGMENT =
OFFSET TO ADDRESS 100000h =
OPCODE = ADD. S =
Source1 = F1 =
Source2/Destination = T2 =

FFFF:OOOOh
0010h
OOOOh
0001h
0008h

ACTUAL ADDRESS GENERATED = FFFF:0019h

The segmented address, written FFFF:0019h, is
equivalent to address 100009 hex. The use of the fs
segment and the offset of 10 hex is pre-programmed
into the WTL 3167 real mode macro set.

EXECUTION TIMES FOR INDIVIDUAL
INSTRUCTIONS

To estimate WTL 3167 performance, the table in
figure 44 may be used. The double-precision memory­
to-register estimates include a load ws1 instruction.

The figures below assume that new instructions are sent
to the WTL 3167 within six cycles of the acknowledg­
ment of a transfer by the coprocessor.

ESTIMATED TIMES FOR TRANSCENDENTAL
FUNCTIONS

Figure 45 gives the execution times for procedures in
our library of transcendental functions. The exact
times may vary according to the values of the operands
handed to the functions; the times in the table are av­
erage times. Transcendental routines are provided to
compiler vendors with WTL 3167 support.

Instruction Type Single-Precision Dou ble-Precision
Register-to-Register Register-to-Register

LOAD, Compare, ABS 3 cycles 3 cycles
ADD, SUB, NEG, Conversion 6 cycles 6 cycles

MUL 6 cycles 10 cycles

AMUL 9 cycles 13 cycles
MULN 12 cycles 16 cycles

DIV 38 cycles 66 cycles
SQRT 60 cycles 118 cycles

MAC 12 cycles 16 cycles
MACD.S 12 cycles
STORE* 3 cycles

* Store operations require a variable number of cycles because they cannot be performed if
any other operation is in progress.

Figure 44. Latency

37
© Copyright WEITEK 1988

All Rights Reserved

Applications Programmer's Section, continued

Function Single- Double- Absolute Relative Monotonicity
Precision Precision Accuracy(1) Accuracy(17)

SQRT (2) 117 cycles 285 cycles nla (3) 5 ULPs TOT (4)
SIN (5) 146 292 1 . 6 U LPs (1 8) 5 TOT
COS (5) 140 285 2.2 5 TOT
ATAN (6) 157 398 3.0 5 TOT
EXP (7) 179 401 2.2 5 TOT
LOG (8) 171 365 2.7 5 TOT
TAN (9) 188 340 (10) nla (3) 5 ULPs nla (11)
COTAN (9) 150 372 (10) nla (3) 5 ULPs nla (11)
ASIN (12) 175 467 nla (3) 5 ULPs nla (11)
ACOS (12) 175 467 nla (3) 5 ULPs nla (11)
SINH (13) 185 400 (14) nla (3) 5 ULPs nla (11)
COSH (13) 185 400 (14) nla (3) 5 ULPs nla (11)
TANH (15) 194 350 nla (3) 5 ULPs nla (11)
REM (6) nla nla nla (3) 5 ULPs nla (11)
MOD (6) nla nla nla (3) 5 ULPs nla (11)
ASCII-+BINARY (16) .01 ULP .01 ULP To .01 ULP
BINARY -+ASCII (16) .01 ULP .01 ULP To .01 ULP

Notes:

1. As determined by Alex Liu' s II Elefunt" program
2. Square root can be implemented much faster using the SQRT instruction. The routine is used when

running code written for the WTL 1167. The number shown is an average for 100,000 uniformly
distributed numbers from 0 through 50,000

3. Absolute accuracy tests do not exist for these functions
4. TDT is an abbreviation for lito the degree tested"
5. Average for 50,000 uniformly distributed numbers from 0 through 7T/4, 25,000 uniformly distributed

numbers from 7T/4 through 7T/2, and 25,000 uniformly distributed numbers in the range of 7T/2
through 7T

6. Average for 100,000 uniformly distributed numbers from -1 through 1
7. Average for 100,000 uniformly distributed numbers from -10 through 10
8. Average for 100,000 uniformly distributed numbers from e-10 through e10 •

9. Average from 0 to 4.1 X 103

10. Average from 0 to 6.7 X 107

11 .. Monotonicity has yet to be determined
12. Average from 0 to 1
13. Average from 0 to 89
14. Average from 0 to 710
15. Average from 0 to 00

16. See figures 46 and 47
17. As determined by Cody and Waite's transcendental routines.
18. ULP is an abbreviation for II units in the last place"

Figure 45. Average execution times for transcendental functions

© Copyright WEITEK 1988
All Rights Reserved 38

Applications Programmer's Section, continued

String Single

0 310
1 384
1.23456 704
123456. 672
123456789012345. 1120
1234567890.12345 1088
12345678901234567890. 1376
1234567890.1234567890 1344
1234567890.12345678ge10 1568
12345678901234567890.e10 1568
1.2345678901234567890e38 1600
12.345678901234567890e-38 1664
1.23456e15 832
1 .23456e-15 896

Counts are ± 30 cycles

Figure 46. ASCII-.float (cycles)

39

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Double

310
416
704 } 672

1152 } 1184
1696
1696
1888
1856
1856
2048
864 } 896

6 Digits

15 Digits

20 Digits
(and
optional
exponent)

6 Digits

© Copyright WEITEK 1988
All Rights Reserved

Applications Programmer's Section, continued

Format

f9.2

f17.10

f27.20

e9.2

e17.10

e27.10

g9.2

g17.10

g27.20

Counts are ± 30 cycles

Figure 47. Float -+ASCII (cycles)

© Copyright WEITEK 1988
All Rights Reserved

Number

.12345
1
1234.567
.00000000001
.0001
1.23456789
12345.6
1e-20
1e-10
1
12345.6

1
1e10
1e38
1
1e10
1e38
1
1e10
1e38

1e-37
.01
.5
90
1000
1e38
1e-37
1e-10
.01
.5
1000
1e9
1e38

1e-307
1e-37
.01
.5
1000
1 e19
1e38
1e308

40

Single Double

672 704
672 736
736 768
576 576
800 832
864 992
864 1056
768 800
960 1088
960 1344
928 1440

936 960
936 1040
944 1408

1104 1216
1104 1240
1112 1488
1152 1560
1160 1592
1168 1648

1048 1512
1048 1088
736 776
744 776

1056 1160
1056 1528
1208 1760
1208 1352
1208 1344
904 1088
912 1040
936 1056

1232 1600

- 1936
1264 1944
1264 1776
960 1376
968 1400
984 1488

1312 1768
- 1968

Applications Programmer's Section, continued

DATA TYPES

The WTL 3167 floating-point coprocessor provides
compatibility with the formats specified in IEEE Stan­
dard 754 , Version 10.0. Several number types are re­
quired to implement the standard. The types supported
by the WTL 3167 are described below.

NORMALIZED NUMBERS (NRM)

Most calculations are performed on normalized
numbers. Single-precision normalized numbers have an
exponent that ranges from binary 00000001 to
binary 11111110 (1 to 254) and a normalized
fraction field (the leftmost or hidden bit is a one).
In decimal notation, this allows one to represent a
range of both positive and negative numbers from
roughly 10+38 to 10-38 with accuracy to seven decimal

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

places. Double-precision numbers have an exponent
ranging from one to 2,046 and a normalized fraction
field.

INFINITY (INF)

Infinity has an exponent of all ones and a fraction field
equal to zero. Both positive and negative infinity are
allowed.

ZERO

ZERO has an exponent of zero, a hidden bit equal to
zero, and a value of zero in the fraction field. Both +0
and -0 are supported.

Single-Precision
31 30

lsi
e

8

e f

255 not 0

255 0

1 .. 254 any

0 0

63 62 52 51

lsi
e I
11

e f

2047 not 0

2047 0

1 .. 2046 any

0 0

Figure 48. IEEE data types

23 22

I f

23

Value

none
(-1) S X infinity
(-1) S X 2e- 127 X (1 . f)

(-1) s x 0

Double-Precision

Value

none
(-1) S X infinity
(-1) S X 2e-1023 X (1 . f)
(-1)Sx 0

41

f

52

0

I
Name

NaN (Not A Number)

Infinity

Normalized number

Zero

0

I
Name

NaN (Not A Number)

Infinity

Normalized number

Zero

© Copyright WEITEK 1988
All Rights Reserved

Applications Programmer's Section, continued

NOT A NUMBER (NaN)

NaN is a special data format usually used as a flag for
data flow control, for uninitialized variables, or to
signify an invalid operation such as 0 times infinity.
The format for a NaN is an exponent of all ones and a
non-zero fraction.

DENORMALIZED NUMBERS (DNRM)

Denormalized numbers have a zero exponent and a
denormalized (hidden bit equal to zero) non-zero
fraction field. They represent numbers smaller
than 2 -127 (single-precision) or 2 -1023 (double-preci­
sion) .

ROUNDING OPTIONS

The WTL 3167 supports all four rounding modes of
the IEEE standard: round to nearest, round toward
zero, round toward plus infinity, and round toward mi­
nus infinity. Rounding may be biased or unbiased. Bi­
ased rounding introduces a small offset in the direction
of the bias. Positive bias, negative bias, or a bias toward
zero are specified in the IEEE format. Unbiased
rounding rounds the result to the nearest representable
number. In the case of a number exactly halfway be­
tween two representable numbers, the number is
rounded toward the closest even number, resulting in
half of the numbers rounding up and half rounding
down, on average.

ROUND TO NEAREST (RN)

Rounds the result to the nearest representable value. If
two numbers are equally near the result, the even num­
ber is chosen.

ROUND TOWARD ZERO (RZ)

Rounds the result to the value closest to but not greater
than the magnitude of the result.

ROUND TOWARD PLUS INFINITY (RP)

Rounds the result to the value closest to but not less
than the result.

© Copyright WEITEK 1988
All Rights Reserved 42

ROUND TOWARD MINUS INFINITY (RM)

Rounds the result to the value closest to but not greater
than the result.

IEEE CONSIDERATIONS

While the IEEE floating-point formats are supported by
the WTL 3167, some features of the IEEE standard
are not provided due to the design focus on high
speed.

EXCEPTION HANDLING

The occurrence of an enabled exception causes an in­
terrupt. Due to extensive instruction overlapping, the
exact location of an exception is not maintained. In the
debugging stage of a program it is possible to identify
the instruction which caused the exception by perform­
ing a store context after every floating-point instruction
and then testing the enabled exception bit.

The following exceptions are flagged by the
WTL 3167:

Undefined Opcode Exception (UOE)

Whenever an illegal opcode is detected, the undefined
opcode exception is set. On a read bus operation, for
example, only store-type opcodes are allowed. If a
read bus operation specifies any other instruction, such
as MUL.S, then the undefined opcode exception bit is
set.

Precision Exception (PE)

The precision exception (PE) flag of the accumulated
exception field is set whenever there is a loss of accu­
racy. The coprocessor data paths compute results to
higher precision than the number of mantissa bits that
appear in the result. If any of the fraction bits less than
the LSB was equal to one prior to rounding, then the
PE bit will be set high. The precision exception will also
be signaled if there is a partial or complete loss of sig­
nificance in a float-to-fixed operation.

Applications Programmer's Section, continued

Overflow Exception (DE)

An overflow exception (DE) is generated when the
result of a floating-point operation overflows the largest
representable number. The result produced at the out­
put is either infinity or the largest representable positive
or negative number, depending upon the rounding
mode as follows:

Largest positive
normalized number

Largest negative
normalized number

+ Infinity

-Infinity

if ((RM or RZ)
and the result is positive)

if ((RP or RZ)
and the result is negative)

if ((RN or RP) and the result
is positive)

if ((RN or RM) and the result
is negative)

Overflow is also generated when converting floating­
point-to-fixed point and the result overflows the 32-bit
format.

Underflow Exception (UE)

When the result of an operation after rounding is less
than the minimum normalized number in the destina­
tion format, UE is asserted and the result is flushed to
zero. A result of exactly zero does not underflow.

43

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Zero Divide Exception (ZE)

The WTL 3167 will assert a ZE exception when per­
forming division on a normalized dividend and a zero
divisor. The result is a properly signed infinity.

Invalid Operation Exception (IE)

IE is asserted if a NaN input or if an invalid operation
occurs. The invalid WTL 3167 operations are ooXO,
0/0, 00/00, subtraction of like infinities (00 - 00) and
addition of opposite infinities 00+ (-00). The result of
any invalid operation is a NaN with the fraction and
exponent of all ones. The sign bit is zero.

FAST MODE

The WTL 3167 always operates in Fast Mode: den or­
malized inputs to either the multiplier or AL U are
flushed to zero as well as unnormalized outputs. The
minimum normalized number has an exponent of one
and a fraction field of zero. Zero has an exponent of
zero and a fraction field of all zeros. This allows to
represent numbers between the smallest normalized
number and zero. These numbers are known as denor­
mals (DNRM). Since denormals are very close to zero,
most applications can substitute zero for a denormal
without a significant loss of accuracy.

© Copyright WEITEK 1988
All Rights Reserved

Applications Programmer's Section, continued

OPERATION STATUS AND RESULT

The following tables show the results which are
obtained for various combinations of input data for­
mats and rounding options. The format used in these
tables is: (status) result. When OK is indicated for the
status, no exception is flagged.

Source1

ZERO DNRM

NaN (IE) NaN (IE) NaN

INF (OK) INF (OK) INF

NRM (OK) NRM (OK) NRM

DNRM (OK) ZERO (3) (OK) ZERO

ZERO (OK) ZERO (3) (OK) ZERO (3)

Notes:

1. +INF+INF --. +INF
-INF-INF --. -INF

2. +INF-INF --. NaN (invalid operation)
-INF+INF --. NaN (invalid operation)

3. +ZERO+ZERO --. +ZERO (RN,RZ,RP,RM)
-ZERO-ZERO --. -ZERO (RN,RZ,RP,RM)
+ZERO-ZERO --. +ZERO (RN,RZ,RP)
+ZERO-ZERO --. -ZERO (RM)
-ZERO+ZERO --. +ZERO (RN,RZ,RP)
-ZERO+ZERO --. -ZERO (RM)

Source2

NRM INF NaN

(IE) NaN (IE) NaN (IE) NaN

(OK) INF
(OK) INF (1)
(IE) NaN (2)

(IE) NaN

(OE) (4)
(OK) NRM

(OK) INF
(UE) ZERO

(IE) NaN

(OK) ZERO

(OK) NRM (OK) INF (IE) NaN

(OK) NRM (OK) INF (IE) NaN

4. OVF will produce INF or maximum normalized number (MAX.NRM), depending upon the rounding
mode:
+MAX.NRM
-MAX.NRM
+INF
-INF

IF [(RM, RZ) AND (RESULT IS +)]
IF [(RP, RZ) AND (RESULT IS -)]
IF [(RN,RP) AND (RESULT IS +)]
IF [(RN, RM) AND (RESULT IS -)]

Figure 49. Status and result output for add and subtract

© Copyright WEITEK 1988
All Rights Reserved 44

Applications Programmer's Section, continued

Source1 Source2

ZERO DNRM NRM

NaN (IE) NaN (IE) NaN (IE) NaN

INF (OK) INF (OK) INF (OK) INF

(OE) (4)
NRM (ZE) INF (ZE) INF (OK) NRM

(UE) ZERO

DNRM (IE) NaN (IE) NaN (OK) ZERO

ZERO (IE) NaN (IE) NaN (OK) ZERO

Note:

4. Refer to Note 4 on page 44.

Figure 50. Operation status and result output for divide

45

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

INF NaN

(IE) NaN (IE) NaN

(IE) NaN (IE) NaN

(OK) ZERO (IE) NaN

(OK) ZERO (IE) NaN

(OK) ZERO (IE) NaN

© Copyright WEITEK 1988
All Rights Reserved

Applications Programmer's Section, continued

The following table shows the compare status for
different input combinations; the compare status is en­
coded in the condition code field of the peR.

Source1

NaN -INF -NRM

NaN U U U

+INF U G G

+NRM U G G

+DNRM U G G

ZERO U G G

-DNRM U G G

-NRM U G 0, 1, 2

-INF U E L

U: Unordered
E: Source1 = Source2
L: Source 1 < Source2
G: Source1 > Source2

Source2

-ONRM ZERO

U U

G G

G G

E E

E E

E E

L L

L L

+DNRM

U

G

G

E

E

E

L

L

0, 1, 2 may be: Source1 = Source2, Source1 < Source2, or Source1 > Source2

Figure 51. Status for floating-point compare

© Copyright WEITEK 1988
All Rights Reserved 46

+NRM +INF

U U

G E

0, 1, 2 L

L L

L L

L L

L L

L L

Applications Programmer's Section, continued

Source1 Source2/Destination

7FFFFFFF 41DFFFFF
FFCOOOOO

00000001 3FFOOOOO
00000000

00000000 00000000
00000000

FFFFFFFF BFFOOOOO
00000000

80000000 C1EOOOOO
00000000

Figure 52. Integer to double-precision conversions (I32-+F64)

Source1 Source2/Destination

7FFFFFFF 4FOOOOOO

7FFFFFCO 4FOOOOOO

7FFFFF80 4EFFFFFF

00000001 3F800000

00000000 00000000

FFFFFFFF BF800000

80000080 CEFFFFFF

80000040 CFOOOOOO

80000000 CFOOOOOO

Figure 53. Integer to single-precision conversions (I32-+F32)

47

Status

OK

OK

OK

OK

OK

Status

OK

PE

OK

OK

OK

OK

OK

PE

OK

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Comments

Largest positive
integer

+1

ZERO

-1

Largest negative
integer

Comments

Largest positive
integer

Inexact

Exact

+1

ZERO

-1

Exact

Inexact

Largest negative
integer

© Copyright WEITEK 1988
All Rights Reserved

Systems Programmer's Section

The system software is responsible for mapping logical
addresses to the physical address space of the
WTL 3167, detecting the presence of the WEITEK
coprocessor, handling exceptions, saving the coproces­
sor registers when switching between tasks, and emulat­
ing the device when it is not present. In non-multi-task­
ing environments like MS-DOS, only address mapping,
and presence detection need to be performed.

SETTING-UP WTL 3167 ADDRESSING

The Operating System must provide a mechanism to
map logical addresses into the proper WTL 3167
physical addresses.

MS-DOS ENVIRONMENT

Ordinarily, the WTL 3167 memory space is inaccessi­
ble in real mode, since Intel intended only the first
megabyte of the 386 memory space to be used. How­
ever, there is an anomaly of real-mode memory ad­
dressing that allows an extra 65520 bytes of the mem­
ory space to be accessed, which is enough to accom­
modate the WTL 3167. The anomaly occurs when a
segment register is loaded with the value FFFF hex, and
an offset of 10 hex or greater is provided for a
memory address. After multiplying the segment regis­
ter value by 16 and adding the offset, an address ex­
ceeding the I-megabyte boundary is obtained. On the
original 8086/8088, the address wraps around to zero.
On the 386, the address extends into the second mega­
byte of the memory space. This allows a real-mode
program to access linear addresses from 100000 hex
to 10FFEF hex. The 386's paging mechanism can map
those linear addresses to physical addresses in the
WTL 3167's memory space.

The paging must be set up by an initialization program
run at boot time. The program must enter the 386's
Virtual 8086 mode, set up paging tables and seg­
ment descriptor tables, address memory according
to those tables, an then go back to real mode.
The paging mechanism must map the first megabyte
of memory to itself, and must map the addresses
from 100000 hex to 10EFFF hex to the WTL 3167
space at OCOOOOOOO hex through OCOOOEFFF hex.

© Copyright WEITEK 1988
All Rights Reserved 48

If there is an Extended Memory Manager, the page
mapping should be handled at the same time. Because
there exist programs which rely on the wraparound of
the addresses greater than one megabyte, the Extended
Memory Manager should provide for the ability to dy­
namically turn the WTL 3167 mapping on and off.
The steps to perform memory-mapping in a Vir­
tual 8086 environment are explained in detail in the
Memory Management chapter of the Intel 80386 Pro­
grammer's Reference Manual.

Once the paging is set up, the WTL 3167 space can be
accessed starting at OFFFF: 1 0 hex.

DOS PROTECTED MODE ENVIRONMENT

In the MS-DOS protected mode environment the ap­
plication program runs in 386 protected mode to exe­
cute native 386 code andlor access the larger memory
space. Currently there are three tools available for run­
ning programs in protected mode under MS-DOS:
RUN386 by Phar Lap, X-AM by IGC, and OS 386 by
AI Architects. The RUN386 program sets up the ad­
dressing for the WTL 3167, by pointing the fs register
to a segment containing the WTL 3167 memory space.
The WTL 3167 space starts at offset 0 hex within the
fs segment. Under X-AM, the processor assumes a flat
segmentation model: all segment registers are set to
zero, and the entire 386 memory space is accessed
via 32-bit offset values. The WTL 3167 memory
space is re-mapped from OCOOOOOOO hex to the loca­
tion OFFCOOOOO hex.

Since all segment registers point to the same zero
value, no segment override bytes are necessary when
running under X-AM. The default registers ds, es and
ss will always suffice to access the WTL 3167's space.

UNIX AND XENIX ENVIRONMENTS

UNIX and XENIX provide a flat memory space, with
all 386 segment registers pointing to zero, and the en­
tire memory space addressed through 32-bit offsets.
UNIX handles the page re-mapping of the WTL 3167
memory space, so that the applications program can
immediately access the WTL 3167 starting at offset
OFFCOOOOO hex.

Systems Programmer's Section, continued

COPROCESSOR PRESENCE DETECTION

Many application programs will need to test for the
existence of the WEITEK coprocessor (either
WTL 3167 or WTL 1167). If an application program
needs to decide whether to run on the WEITEK co­
processor or the 80387, this information is necessary.

MS-DOS ENVIRONMENT

In the MS-DOS real mode environment, a simple pro­
gram in the ROM BIOS, or resident in main memory
must detect the presence of the WEITEK coprocessor,
and modify the interrupt 11 hex routine so that bits 23
and 24 of the value returned in register eax by the in­
terrupt 11 hex call are set if the WEITEK coprocessor
is present.

To detect the presence of the WEITEK coprocessor
systems programmers will use a simple detection rou­
tine consisting of a software sequence that loads a co­
processor register with a specific data pattern and then
reads it back. The code fragment in figure 54, based
on the MS-DOS macros offered by WEITEK, can be
used to detect the WEITEK coprocessor presence and
modify the interrupt 11 hex routine. It is important to
note that this code assumes that the page tables for real
mode addressing have been set up. It also takes advan­
tage of the fact that a reference to memory that does
not exist will eventually return some undefined result
and the system will not hang. It finally assumes that the
physical address of the WEITEK coprocessor is the
standard address of OCOOOOOOO hex.

If the hardware designer has connected the PRES- sig­
nal of the WEITEK coprocessor to an I/O port, the
systems software designer can determine the coproces­
sor presence by reading such I/O port. This method is
simpler than the previous one but it is system depend­
ent. It may be necessary to change the I/O port address
for each machine.

Once the operating system has detected the presence
of the WEITEK coprocessor and modified the inter­
rupt 11 routine, available DOS compilers and applica­
tions can detect the presence of the WEITEK
coprocessor by calling Interrupt 11 hex and checking
the eax bits 23 and 24 status as shown in figure 55.

49

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

DIS Power-up Sequence for
WEITEK Coprocessor

WEITEK coprocessor
Addressing Set-up

Set up U Presence Flag"
to be used by applica­

tions programs

Figure 54. Operating systems power-up sequence for
WTL 3167

; see if WEITEK coprocessor is present
XOR EAX, EAX
INT 11 h
AND
JNZ
K3167:
J3167:

EAX, 11 shl 23
short J3167
; WEITEK coprocessor not present
; WEITEK coprocessor is present

Figure 55. Compiler test for presence of WTL 3167

© Copyright WEITEK 1988
All Rights Reserved

Systems Programmer's Section, continued

MS-DOS PROTECTED MODE ENVIRONMENT

The MS-DOS protected mode environment (RUN386,
X-AM, or OS 386) is responsible for detecting the
presence of the WEITEK coprocessor. Code similar to
that proposed in figure 56, properly modified for pro­
tected mode addressing, can be used by MS-DOS pro­
tected mode development environment manufacturers
to detect the presence of the WEITEK coprocessor.

Once the environment has detected the presence or
absence of the coprocessor it must provide a way to
communicate it to application programs. Such method
is specific to the environment. Clearly the INT llh
mechanism cannot be used in protected mode. For
Phar Lap-based environments, for example, identical
ds and fs segment registers indicate to the application
that the WEITEK coprocessor is present. For other en­
vironments the reader should consult the manufactur­
er's documentation.

© Copyright WEITEK 1988
All Rights Reserved 50

UNIX AND XENIX ENVIRONMENTS

UNIX and XENIX environments detect the presence
of the WEITEK coprocessor using routines similar to
that shown in figure 56. In both UNIX and XENIX
environments a program can detect the presence of the
WEITEK coprocessor through system call "sysi86".
See the appropriate system documentation for the
name of the system call and the parameter definitions.

Systems Programmer's Section, continued

; see if WEITEK coprocessor is present

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

; (this code assumes that page tables for real mode addressing have already been set up)
; load FFFFh into fs segment register
MOV fs, FFFFh
; save contents of memory which may change if WEITEK coprocessor is not present
MOV ECX, fs:0404h
MOV EDX, fs:0408h
; read register ws1 into eax
WFST EAX, ws 1
; write the data now in EAX into WEITEK coprocessor register ws2
WFLD ws2, EAX
; complement data in EAX, save it in EBX, and write it back into register ws1
NOT EAX
MOV EBX, EAX
WFLD ws 1, EAX
; read the two WEITEK coprocessor registers ws 1 and ws2, and compare them to EBX
WFST EAX, ws 1
CMP EAX, EBX
WFST EAX, ws2
; restore memory which may have changed
WFLD ws 1, EAX
WFLD ws2, EDX
; restore Interrupts
STI
; branch if either register does not compare
JNZ short iOinit
NOT EAX
CMP EAX, EBX
JNZ short iOinit
; if the WEITEK coprocessor is present the system must modify the interrupt 11 h routine so that bits
; 23 and 24 of the value returned by interrupt 11 h in EAX is set (See Note). Application software
; will then use this mechanism to determine whether the WEITEK coprocessor is present.
MOY di, offset Handlerjump
MOY dword ptr [di-4], 11 shl 23
iOinit: ; WEITEK coprocessor is not present

Note: the code that modifies interrupt 11 h assumes that the interrupt handler has been previously
loaded as follows:

Handler:
MOY EAX,O
Handlerjump:
JMP far ptr original ; Jump to original interrupt 11 h handler routine

Figure 56. Test for presence of WEITEK coprocessor (WTL 3167 or WTL 1167)

51
© Copyright WEITEK 1988

All Rights Reserved

Systems Programmer's Section, continued

INITIALIZATION

Multitasking operating systems and application
programs must initialize the WEITEK coprocessor. The
code in figure 58, written using WEITEK macros, will
suffice to initialize any WEITEK coprocessor:
WTL 3167 old or new, WTL 1167, WTL 1167
type A.

The rounding mode, the exception mask field and the
accumulated exception field of the PCR need to be
initialized as well. The instruction in figure 57, for

example, will set round to nearest rounding mode and
will mask and clear all exceptions.

; initialize exception masks and rounding mode
WFLDCTX 003FFOOOOh

Figure 57. Exception mask and rounding mode
initializa tion

WFLDCTX
WFSTRL

88000000h
EAX

; load 88000000h int PCR
; store revision level

CMP
JNE
k1 init:
WFLDCTX

JMP
j1 init:
WFLDCTX
WFLDCTX
i1 init:

ah, OOh
short j 1 init

016000000h

short i 1 init

056000000h
098000000h

; initialize Multiplier and ALU units flowthrough timers in
; WTL 1167

; initialize Multiplier flowthrough timer in WTL 1167 type A
; initialize ALU flowthrough timer in WTL 1167 type A

; regardless of the coprocessor type load the following remaining power-up sequence
WFLDCTX 064000000h
WFLDCTX OAOOOOOOOh
WFLDCTX 030000000h

Figure 58. Initializing the WEITEK coprocessor

© Copyright WEITEK 1988
All Rights Reserved 52

Systems Programmer's Section, continued

EXCEPTION HANDLING

When an enabled exception occurs, the WTL 3167
signals an interrupt to the host pro'cessor.
The 80287/80387 and the WTL 3167 interrupt re­
quests are "ORed" to generate the exception interrupt
(see page 8). Whenever an interrupt occurs, the op­
erating system must first check both the WTL 3167
and the 80287/80387 to assess which device flagged
the exception. To handle the WTL 3167 exception in­
terrupt the operating system must first clear the inter­
rupt, in order to allow processing to continue, and then
transmit the interrupt information to the executing pro­
gram. The operating system can simply notify the exe­
cuting program of a problem, expecting the application
program to identify and correct the problem, or it can
identify the problem and then pass the information to
the application program. In the first case it should clear
the interrupt by setting the appropriate bits in the en­
able exception byte, but leave untouched the accumu­
lated exception byte.

This allows the executing program to determine exactly
which exceptions occurred by reading the context reg­
ister itself. In the second case, the operating system
clears the interrupt by storing the value of the accumu­
lated exception byte and then clearing it. The content
of the accumulated exception byte is then passed to the
application program.

MS-DOS application programs handle IRQ13 interrupts
by trapping INT 75. After resolving WTL 3167 excep­
tions, the routine clears the exception byte and chains
to the INT 75 vector. The INT 75 service routine clears
the interrupt controllers and invokes the Non Mask­
able Interrupt (NMI) handler (for compatibility
with 8088/8086 software).

53

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

CONTEXT SWITCHING

In a multi-tasking environment, such as UNIX and XE­
NIX, the operating system must save the context of the
WTL 3167 when switching between two processes.
Saving the WTL 3167 simply means saving the thirty­
two registers in the register file and the context register.
A block move is very effective in saving the register
file. Restoring the WTL 3167 context is simple too.
The thirty-two registers must be reloaded as well as the
context register. It is also required that the operating
system repeat the coprocessor initialization described
in figures 57 and 58 in case another program had
loaded the WTL 3167, rounding mode, exception
mask, and accumulated exception field of the PCR with
inappropriate values. UNIX System V.3 and XENIX
for the 80386 handle context switching for the
WTL 3167.

COPROCESSOR EMULATION

If emulation of the WTL 3167 is needed, then it is the
operating system's responsibility to provide it. When
the WTL 3167 is not present and an address specifying
a coprocessor instruction is broadcast by the 80386,
the operating system must identify the fault and call the
emulator. The emulator needs to decode the address in
order to identify the floating-point instruction which it
specifies, and it must then execute the instruction with
the system's available resources. The emulator must
duplicate all of the WTL 3167's internal registers and
properly update them after each instruction.
UNIX System V.3 already incorporates a complete
WTL 3167 emulator. Customers who intend to incor­
porate WTL 3167 emulation in other operating systems
should contact WEITEK for more details.

© Copyright WEITEK 1988
All Rights Reserved

WfL 1167 and WfL 3167 Compatibility

This section describes the hardware and software
differences between the WTL 3167 and the WTL 1167
coprocessor daughter board.

HARDWARE COMPATIBILITY

The single-chip WTL 3167 is pin for pin compat­
ible with the WTL 1167 and will fit into the stan­
dard 121-pin extended math coprocessor socket. The
WTL 1167 coprocessor daughter board features a
socket for the 80387, allowing both the WEITEK and
the Intel coprocessors to co-exist in the same system.
Hardware developers can offer the option of using both
the WTL 3167 and the 80387 coprocessors by featur­
ing two separate sockets on the system mother board,
or by using a small daughter board that accommodates
both coprocessors. Figure 5 shows the physical dimen­
sions of the WEITEK daughter board that accommo­
dates both the 80387 and the WTL 3167.

The WTL 3167 DC power consumption is less than
one fifth that of the WTL 1167 daughter board.
The 16 and 20 MHz WTL 3167 AC specs are upward
compatible with those of the WTL 1167 daughter
board. The WTL 3167 is available in faster speed
grades than the WTL 1167. For more details on the
coprocessor DC and AC specifications, the reader
should refer to pages 9 to 11. The WTL 3167 AC
specifications match the new AC specifications for the
Intel 80386 microprocessor.

© Copyright WEITEK 1988
All Rights Reserved 54

APPLICATION SOFTWARE COMPATIBILITY

The WTL 3167 is upward object-code-compatible
from the WTL 1167. The application programs and
all of the software tools available for the WTL 1167
coprocessor daughter board will run as is on the
WTL 3167. The WTL 3167 will respond as a faster
WTL 1167. For more details on the single-chip instruc­
tion execution times, refer to pages 37 to 40.

The WTL 3167 features some new instructions that will
trigger an Invalid Opcode exception, if used with the
WTL 1167. The new instructions include: square root,
reverse subtract, and double-precision multiply accu­
mulate.

SYSTEM SOFTWARE COMPATIBILITY

Addressing, initialization, presence detection, excep­
tion handling, context switching, and coprocessor emu­
lation for the WTL 3167 are the same as they are for
the WTL 1167. Therefore, the WTL 3167 works in all
of the operating system environments that support the
WTL 1167 coprocessor daughter board.

Ordering Information

COPROCESSOR

Part Description Temperature Range

16 MHz WTL 3167 Coprocessor TeAsE = 0 to 85° C

20 MHz WTL 3167 Coprocessor TeAsE = 0 to 85° C

25 MHz WTL 3167 Coprocessor TeAsE = 0 to 85° C

Figure 59. WTL 3167 Coprocessor ordering information

COPROCESSOR BOARD

Customers ordering the coprocessor along with the
small daughter board shown in figure 5, should refer to
the order numbers below.

Part Description Temperature Range

16 MHz WTL 3167 Coprocessor Board TeAsE = 0 to 85° C

20 MHz WTL 3167 Coprocessor Board TeAsE = 0 to 85° C

25 MHz WTL 3167 Coprocessor Board TeAsE = 0 to 85° C

Figure 60. WTL 3167 Coprocessor board ordering information

55

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

Order Number

3167-016-GCU

3167-020-GCU

3167-025-GCU

Order Number

3167-016-BRD

3167-020-BRD

3167-025-BRD

© Copyright WEITEK 1988
All Rights Reserved

Revision Summary

This table lists many of the most major changes since the September, 1986 printing of this data sheet. The data
sheet has undergone a complete transformation since then. It is now more accurate, more complete, and much
longer. Few, if any, sections from the old data sheet exist unchanged in the new one.

Change

1. Specifications

2. Software Tools Overview

3. Instruction Encoding

4. Ordering Information

© Copyright WEITEK 1988
All Rights Reserved

Description

Revised, page 10-11

Revised, page 20

Revised, page 32

Revised, page 55

56

WTL 3167 FLOATING-POINT
COPROCESSOR

PRELIMINARY DATA
September 1988

For additional information on WEITEK products, please fill out the form below and mail.

Name Title

Company Phone

Address

Comments
I am currently involved in a design with the following Weitek products ______________ and wish to be added to your
design data base to insure that I receive status updates.

APPLICATION:

o ENGINEERING WORKSTATIONS o SCIENTIFIC COMPUTERS

o GRAPHICS o OTHER _______ _

o PERSONAL COMPUTERS

Check the products on which you wish to receive data sheets: D Have a sales person call

ATTACHED PROCESSORS COPROCESSORS BUILDING BWCKS

o XL-SERIES OVERVIEW o 1167 o 2264/2265 o 1066 o 2516

o XL-8200 OVERVIEW o 116411165 o 3132/3332 o 2010 o 2517

o 3164/3364 o 1232/1233 o 2245

o 3167

WEITEKuse: Rec'd Out TPT Source: DS

Status

WEITEKWTL 3167
Please Comment On The Quality Of This Data Sheet.
Even though we have tried to make this data sheet as complete as possible, it is conceivable that we have
missed something that may be important to you. If you believe this is the case, please describe what the
missing information is, and we will consider including it in the next printing of the data sheet.

Fold, Staple and Mail to Weitek Corp.

BUSINESS REPLY MAIL
FIRST CLASS PERMIT NO. 1374 SUNNYVALE, CA

POSTAGE WILL BE PAID BY ADDRESSEE

WEITEK Corporation
1060 E. Arques Ave.
Sunnyvale, CA 94086-BRM-9759

ATTN: Ed Masuda

NO POSTAGE
NECESSARY
IF MAILED

IN THE
UNITED STATES

WEITEK ~

~

Headquarters
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

WEITEK'S CUSTOMER COMMITMENT:

Weitek's mission is simple: to provide you with VLSI solutions
to solve your compute-intensive problems. We translate that
mission into the following corporate objectives:

1. To be first to market with performance breakthroughs, allow­
ing you to develop and market systems at the edge of your art.

2. To understand your product, technology, and market needs, so
that we can develop Weitek products and corporate plans that
will help you succeed.

3. To price our products based on the fair value they represent to
you, our customers.

4. To invest far in excess of the industry average in Research and
Development, giving you the latest products through techno-
logical innovation. '

5. To invest far in excess of the industry average in Selling, Mar­
keting, and Technical Applications Support, in order to pro­
vide you with service and support unmatched in the industry.

6. To serve as a reliable, resourceful, and quality business part­
ner to our customers.

These are our objectives. We're committed to making them
happen. If you have comments or suggestions on how we can
do more for you, please don't hesitate to contact us.

Art Collmeyer
President

Domestic Sales Offices
Weitek Corporation
1060 E. Arques Avenue
Sunnyvale, CA 94086
TWX 910-339-9545

WEITEKSVL
FAX (408) 738-1185
TEL (408) 738-8400

Corporate Place IV
111 South Bedford St.
Suite 200
Burlington, MA 01803
FAX (617) 229-4902
TEL (617) 229-8080

European Sales Headquarters
Greyhound House, 23/24 George St.
Richmond, Surrey, TW9 UY
England
TELEX 928940 RICHBI G
FAX 011-441 940 6208
TEL 011-441549 0164

Japanese Representative
4-8-1 Tsuchihashi
Miyamae-Ku
Kawasaki, Kanagawa-Pre
213 Japan
FAX 044-877-4268
TEL044-852-1135

