

NumberCruncher Reloaded

User’s Manual

Compatible with Apple IIe

and IIgs.

Created with ❤ at the

The GeekDot Laboratories

This manual and the software described in it are copyrighted, with all rights reserved.

Under the copyright laws, this manual or the software may be copied, in whole or part, with

written consent of The GeekDot Laboratories. The same proprietary and copyright notices

must be affixed to any permitted copies as were affixed to the original. This exception does

not allow copies to be made to be sold to another person. Under the law, copying includes

translating into another language or format.

You may use the software on any computer owned by you, and if you need extra copies just

do so.

The GeekDot Laboratories logo is a trademark of GeekDot Laboratories registered nowhere

we can think of.

Honestly…

Do not use this manual or the NumberCruncher Reloaded card for any mission-critical

applications, or for any purpose in which a bug or failure could cause you a financial or material

loss. This product was designed to enhance your Apple II computing experience but may

contain design flaws that could inhibit its proper operation or result in a loss of the data

recorded on the storage devices attached to it. When using this product, you assume all risks

associated with operation or data loss.

Legalese Version:

Axel Muhr, aka The GeekDot Laboratories, is a private person and hobbyist. He makes no

warranties either expressed or implied with respect to this manual or with respect to the

software or firmware described in this manual, its quality, performance, or fitness for any

particular purpose. All software and firmware is sold or licensed ―as is. Any risk of incidental

or consequential damages resulting from the use of the information in this manual or the

software / firmware / hardware described herein, shall be assumed by the user or buyer or

licensee. In no event will The GeekDot Laboratories be liable for direct, indirect, incidental

or consequential damages resulting from any defect in the software / firmware / hardware

described in this manual.

The GeekDot Laboratories reserves the right to make changes and improvements to the

product described in this manual at any time and without notice.

Last words of warning:

You should avoid electrostatic discharge to the NumberCruncher Reloaded card. Like all

electronics devices, static shock can destroy or shorten the life span of the NumberCruncher

Reloaded card. Avoid touching the NumberCruncher Reloaded card after you have walked

across the room, especially over carpet, and especially in dry weather.

You should safely discharge yourself before you handle the NumberCruncher Reloaded card.

This can be done by momentarily touching a grounded piece of metal.

In all cases, please exercise common sense and observe all electrical warnings provided by the

manufacturers of the equipment you are using.

Parts within this Guide were taken from the original FPE manual. This was not done due to
laziness, but because some things are so undeniably good, you just make them worse if you

try to work around it. We’re all standing on the shoulders of giants…

Finally, …

I’d like to deeply thank my loved ones Gesa and Zoe for being forgiving about the time I’ve

wasted spent, developing this thing.

Vagöldsgott, Mike Brüstle, without whom I would still stare into my VHDL like a pig into a

clockwork.

Kiitos paljon goes out to Petri Kukko who did all the “Hausfrauentests” for me.

Merci beaucoup Antoine Vignau for adding some “Brutality Deluxe”.

Thanks a metric ton to Richard Edwards for proofreading “zhe manual” through a native-

speakers eye.

With this off my heart, let’s proceed for the fun part.

Preface .. 6

Before You Start ... 6

About the NumberCruncher Reloaded .. 7

About this guide ... 9

Some visual cues .. 9

Chapter 1.. 10

Preparing the Card ... 10

Installing the NumberCruncher Reloaded .. 11

Software .. 12

Apple IIgs .. 13

Apple II, II+ and IIe .. 13

AppleWorks™ .. 14

Chapter 2.. 15

 SANE Background .. 15

Interfacing to SANE .. 15

About the MC68881 and SANE ... 16

Chapter 3.. 19

Access the NumberCruncher Reloaded ... 19

How the NumberCruncher Reloaded transfers Data .. 21

MEMREG and REGMEM Operations .. 21

REGREG Operations... 23

Chapter 4.. 25

Programming .. 25

Assembly ... 25

C Language ... 28

Contents

Applesoft ... 28

Programming Hints .. 30

Appendix A .. 32

The 68881/2 .. 32

Data formats ... 33

Construction of an MC68881/68882 Command .. 34

Constructing a command step-by-step ... 35

6

Before You Start

 ow you have the ultimate math power at your

hands. With the NumberCruncher Reloaded

installed in your Apple II computer, you can take

advantage of the dedicated floating point

calculation power and run many applications on

your Apple IIgs unchanged but much faster.
With little programming Apple IIe applications can

be accelerated, too.

This guide tells you how.

N

Preface

7

The NumberCruncher Reloaded is a peripheral card that features

a math co-processor, often also called a Floating Point Unit (FPU)

which is specialized on, well, floating point calculations. Doing so,

it is much, much faster than any 6502 or 65816 CPU ever will be.

The NumberCruncher Reloaded will not automatically speed-up

your programs as CPU accelerators like the Transwarp GS or ZIP

CHIP would do. Programs will have to be either specifically written

to use the NumberCruncher Reloaded or use a floating-point

library like the SANE interface which then needs to be patched to

itself use the NumberCruncher Reloaded for calculations instead

of the main CPU.

You will find all the necessary patches, tools and demos in the

provided archive.

Like many great inventions, The NumberCruncher Reloaded

stands on the shoulders of giants. The ‘Reloaded’ hints towards its

predecessors:

In the beginning, 1988, there was the Floating Point Engine (FPE)

created by Innovative Systems (‘iS’ for short). While it was a great

idea, it wasn’t the most stable design – but it laid the foundation

especially and most importantly for the software we’re still using

today.

Due to the FPE’s issues there was quite some displeasure in the

usership and in 1990 a German company called Alternative Systems

announced the Number Cruncher, a ‘correction’ to the original

design – here’s their newsgroup announcement:

"The FPE is suffering from a major problem, namely the coproc is

crashing internally and has to be reset in software. This happens

in a non-deterministic way, and software written for that

engineering junk must be adapted to that.

The Number Cruncher is compatible with the FPE but is actually

what the FPE was supposed to be - a math coproc that works. It

performs very well."

About the

NumberCruncher

Reloaded

8

Over the years the FPE as well as the NC faded in unobtanium.

Because they were cool, and we love processors of all kinds it was

time to reload the Number Cruncher.

To learn more about its history, visit its very own page at:

www.geekdot.com/number-cruncher

Like its predecessors the NumberCruncher Reloaded provides the

most efficient floating point math capability for all members of the

Apple II™ family.

And like the FPE and the original NC, the NumberCruncher
Reloaded supports the Motorola MC68881 floating point processor

but was improved in many aspects to make it much more usable in

the 21st century:

▪ it also supports the enhanced and the easier to find

MC68882

▪ FPU’s can be used either in pin-grid-array or PLCC
package thanks to the two sockets provided. Again, the

latter being much more common these days

▪ Increased stability by using low-power SMD parts and a 4-

layer PCB with dedicated supply layers

▪ Speed optimized FPU protocol handling

▪ 2 more LEDs, which we consider very important.

▪ Upgradable firmware (ALTERA JTAG programmer
required)

http://www.geekdot.com/number-cruncher

9

This guide contains all the information you need to use the

NumberCruncher Reloaded with your Apple II™. Here’s what

you’ll find in this guide:

▪ Chapter 1, “Preparing the Card,” tells you how to install your

NumberCruncher Reloaded into your Apple II™ and what you

need to set up.

▪ Chapter 2, “The Software” explains you some details about the

software delivered with this card.

▪ Chapter 3, “Access the NumberCruncher Reloaded” contains a

brief overview of the different ways to put your card to use.

▪ Chapter 4, “Programming” gives you some examples of how to

use the card with Assembler, C and even Applesoft Basic

▪ Appendix A, “The 68881/2” will give you a brief overview of

the MC6888x FPU and its internals.

This Manual uses some special text elements to help guide you.

Use them as visual cues as you read:

❖ By the way: Text set off in this manner presents sidelights or

interesting pieces of information. ❖

 Important: Text set off in this manner presents important

information.

▲ Warning: Warnings like this alert you to situations in which you

might damage your equipment or lose data if you don’t follow the

instructions carefully. ▲

Special terms appear in italics when they are introduced; these

terms are defined in the glossary at the back of the guide.

About this guide

Some visual cues

10

Preparing the Card

Being optimized for maximum convenience there is not much for

you to prepare. There are no jumpers to set and no software to

configure it.

Depending on the version you have ordered your

NumberCruncher Reloaded might look slightly different. It might

have just one or both sockets soldered and already features a 68881

or 68882 FPU.

If you purchased your NumberCruncher Reloaded without any

FPU, please install one now. Like all integrated circuits FPUs are

prone to static charge. Ground yourself before handling the FPU.

Holding the card with its slot-connector facing down (Fig. 1), insert

the FPU in either the left PLCC (A) socket or the right PGA (B)

socket with pin-1 in the upper left corner (Red dot in Fig. 2).

 Important: All you must make sure is that there’s just one FPU

installed. Populating both sockets will result in unpredictable

behavior of your card and Apple computer.

Chapter 1

Fig. 2

Fig. 1

11

1) Turn off your Apple II computer. Carefully remove the case

cover from your computer as described in the owner's

manual supplied by Apple.

2) Face the computer as you normally would if using it

(keyboard toward you. Refer to Figure 3.).

3) Ground yourself by touching the top of the metal cover of

the power supply on the left-hand side of the computer.

4) Remove the NumberCruncher Reloaded from the box and

the anti-static plastic wrapping. Undertake a final check to

ensure that there is an FPU (68881/2) installed in one of the

two sockets. Just one.

5) Install your NumberCruncher Reloaded in any slot

numbered between 1 and 7. Ensure that the component

side of the board (the side with the lettering) faces to your

right in the direction away from the power supply. Refer to

the red arrow in Fig.2.

Don't try to use the memory expansion slot in the IIGS - it is

not a peripheral slot.

6) Replace the case cover, plug the computer power cord into

the power outlet, apply power, and boot your computer as

normal.

7) The computer should boot normally and is now ready for

software installation.

You may have to enable the slot in which the Number Cruncher

Reloaded is installed. Follow the instructions in your user's manual

to use the control panel to select "Your Card" for the appropriate

slot.

No enabling is required for Apple IIe computers because the slot

I/O is normally active.

Installing the

NumberCruncher

Reloaded

Fig. 3

12

One reason to revive the FPE/NC was the already existing software

base. So, for example in contrast to the T2A2 Transputer interface

card (another splendid product from The GeekDot Laboratories)

you are not required to program your own software to take

advantage of the Number Cruncher Reloaded.

 Your card came with a floppy which contains a basic set of programs

discussed in this manual. You will find all these (and more) on the

NumberCruncher Reloaded homepage, too:

 http://www.geekdot.com/numbercruncher-reloaded/

The easiest and most transparent way to have your software

accelerated is to pick software which use the Standard Apple

Numerics Environment™ (SANE).

The SANE defines a series of calls which provide numeric

operations in accordance with IEEE Standard 754 Binary Floating-

Point Arithmetic. This environment provides very accurate

numerics. Unfortunately, SANE operations can be very slow. The

NumberCruncher Reloaded provides the numeric operations, but

at a much faster rate.

Because SANE is standard with the Apple II™ computer, Innovative

Systems provided a numerics software package which replaces

most of the routines in the SANE toolset. This software uses the

same calling sequences, processes the commands in 80-bit

precision, and generally provides the same results as those

described in the "Apple Numerics Manual".

Finally, there’s some software natively using an FPU card. These

programs are the fastest and make your Apple II™ feel like a rocket

(at least compared to one without an FPU).

Software

13

To use the numerics software on an Apple IIGS, you must have

copied the FPE.INIT from the archive/disk to the SYSTEM folder on

the system disk.

In the provided archive you will find a

initialization file, coded specifically for each slot.

These slot dependent files provide a small speed

improvement over files which automatically

locate the NumberCruncher Reloaded slot,

because the code uses direct addressing of the

FPE slots rather than using indirect indexed

addressing. Thus, if the NumberCruncher

Reloaded is in slot 2, you must have the file "FPE.INIT.S2" in your

"/SYSTEM/SYSTEM.SETUP" directory on your startup disk.

▲ Warning: Use of any FPE.INIT file not corresponding to the slot

number containing the NCR will crash your system. ▲

Optimized code for accessing the NumberCruncher Reloaded

from a higher-level language will be included in the software

package you purchase (such as ORCA/C) and requires no

installation on your part.

The replacement for the SANE interface in the Apple II, II+ or IIe

is customized (to a specific absolute memory address) and is

included on the FPETOOLS distribution disk in the

"/FPETOOLS/FPE.6502/TOOLSET" directory. This toolset uses the

following calls:

jsr $2100 to call the fp6502 routines

jsr $2104 to call the ELEMS6502 routines

This toolset loads into locations beginning at $(00)2100 and has a

length of less than $1000 bytes. The toolset has a filetype of BIN.

Apple IIgs

Apple II, II+ and IIe

14

AppleWorks™ Classic

The replacement for the AppleWorks Classic calls to the 8-bit SANE

software is included on the FPETOOLS distribution disk. Boot that

disk and it will automatically locate the NumberCruncher Reloaded,

report its slot number and displays a menu.

If you have AppleWorks Classic, select option 2 to install a patch

which provides the capability for AppleWorks to use the

NumberCruncher Reloaded when doing math.

Because AppleWorks can be in a subdirectory, please provide the

volume name and the subdirectory in response to the prompt from

the initialization program. For example, if AppleWorks is installed

in directory "/AppleWorks" on volume "/hard1", please enter

"/hard1/AppleWorks" when prompted. Also, if your Startup disk

and your Program disk are the same, enter the same information

after both prompts.

AppleWorks™ GS

Support for AppleWorks GS is automatically provided as this

package uses the GS/OS SANE tool set calls.

AppleWorks™

15

 SANE Background

The Standard Apple Numerics Environment™ (SANE) defines a

series of calls which provide numeric operations in accordance

with IEEE Standard 754 Binary Floating-Point Arithmetic. SANE also

provides several utility functions which include conversions of data

from an ASCII representation to binary floating point and back

again. This environment provides very accurate numerics.

Unfortunately, SANE operations can be very slow. The Number

Cruncher Reloaded provides the numeric operations, but at a much

faster rate.

Because SANE is standard with the Apple II computer, Innovative

Systems provides numerics software package which replaces most

of the routines in the SANE toolset The software uses the same

calling sequences, processes the commands in 80-bit precision, and

generally provides the same results as those described in the

"Apple Numerics Manual. One difference is that the

transcendentals returned are slightly less accurate (76 bits or more

of accuracy versus 80 bits from SANE); however, this change in

accuracy should not adversely affect the performance of your

software (see "Apple Numerics Manual. Second Edition". Chapters

28. and Chapter 10 of this manual for the details). Another

difference is that the NumberCruncher Reloaded does not process

COMP type variables. COMP calls will work with the FPE toolset

(except at the speed of the Apple II since the calls use the standard

SANE code). Because the FPE toolset is a hybrid of calls to the

NumberCruncher Reloaded and to the standard SANE toolset code,

use of the FPE toolset is automatic and transparent to most existing

software.

Interfacing to SANE

Chapter 2

16

The information in this chapter is excerpted from the "Apple

Numerics Manual, Second Edition" chapters 27, 28, and 29. While

all the information in the SANE manual may pertain to the

operation of the MC68881 in the Macintosh II, the data here

pertains only to the operation of the NumberCruncher Reloaded

when called by the FPE toolset.

Functions the same on both MC68881 and FPE software and SANE

The MC68881 and the FPE toolset return identical results for the

following operations:

▪ Addition

▪ Subtraction

▪ Multiplication

▪ Division

▪ square root

▪ remainder

▪ round-to-integral value

▪ conversions between floating point formats

▪ negate

▪ absolute value

Functions similar

For transcendental operations, the NumberCruncher Reloaded

gets results slightly less accurate than those returned by SANE; for

some operations, the FPE gets different results for cases involving

zero, Infinities, and NaNs.

The NumberCruncher Reloaded returns slightly less accurate

results than those returned by SANE in the following cases:

▪ binary scale (FPE truncates scale factors to 14 bits)

▪ base-e logarithm

▪ base-2 logarithm

▪ base-e logarithm of 1 + x

▪ base-e exponential

▪ base-2 exponential

About the MC68881

and SANE

17

▪ base-e exponential minus 1

▪ sine, cosine, tangent, arctangent

▪ integer exponentiation

▪ general exponentiation

▪ base-2 logarithm of 1 + x

▪ base-2 exponentiation minus 1

▪ compound interest

▪ annuity factor

The NumberCruncher Reloaded returns results with the same

accuracy but behaves differently for zero, denormalized numbers,

Infinities, and NANs:

▪ round-to-integer (when out-of-range the NC-R preserves

the sign)

▪ truncate-to-integer (when out-of-range the NC-R

preserves the sign)

▪ binary logarithm (same results except for 0 and Infinity).

All remaining operations available from SANE can be assumed to be

as accurate and operate in the same manner for calls to the FPE

toolset.

Accuracy or the MC68881's elementary functions

For the elementary functions, both the SANE and the FPE

(MC68881) packages have errors in the least significant bits of the

fraction part of the extended format results, but the SANE package

errors rarely exceed the last bit, whereas the FPE errors can extend

to as many as five bits. Hence, for individual elementary functions,

both packages return results nearly identical when rounded to

single or double precision. For complicated expressions involving

elementary functions, the NumberCruncher Reloaded is more

likely to return an error in double precision results than the SANE

packages are.

18

Controlling the environment

The FPE toolset converts the standard SANE environmental control

calls to those needed by the MC68881.

Halts and Traps

The FPE toolset handles halts in the same way that the SANE

package does.

Traps are not supported.

19

Access the NumberCruncher Reloaded

How does the System know which slots contains the

NumberCruncher Reloaded or its predecessors?

1. If you have an Apple IIGS and you have loaded the FPETOOL.INIT

file corresponding to the slot containing the FPE, all calls to SANE will

automatically go to the NumberCruncher Reloaded.

2. If you write your own code to directly access the NumberCruncher

Reloaded, you must use the correct address for the slot locations:

that is,

$c080 + 16 * slot_number (e.g., $c090 for slot 1)

Refer to Chapter 3 for information on how to determine the

NumberCruncher Reloaded slot number without hard coding the slot

number into your source code.

Direct access means that software writes information directly to or

reads data directly from the Number Cruncher Reloaded coprocessor

interface registers. These interface registers reside in the 6 locations

reserved for the slot in which the card resides. These 16 locations are

designated as Read-only, Write-only, or Read/Write, depending upon

their purpose. In using direct access, the software does not need to

"pass through" unnecessary general-purpose code.

Direct access is the most efficient method of communicating with the

FPE. It eliminates overhead; this is not to say it is always the best

method of interfacing, however. For Direct refer to Chapter 3

containing additional information necessary to do direct accessing of

the NumberCruncher Reloaded.

Chapter 3

20

The Motorola MC6888x communicates with the host processor

(6502, 65C02, or 65816) by way of Coprocessor Interface

Registers (CIR). These registers are used for control of,

transferring operands to, and returning status from the MC6888x.

The Apple II technical manuals and the Motorola

"MC68881/68882 Floating-Point Coprocessor User's Manual"

contain valuable information on accessing the registers and

details which explain the uses for the CIRs. The NumberCruncher

Reloaded allows access to all the CIRs that are required to

implement all MC6888x instructions. The only CIRs not accessible

are those intended for use with the 68020/68030

microprocessors, and which do not impact performance with the

6502/65816. The registers implemented in the NumberCruncher

Reloaded and their base addresses are given in this table:

Base Address

Register Location Width Type

Response $C0k0 16 R

Control $C0k2 16 W

Save $C0k4 16 R

Restore $C0k6 16 R/W

Command $C0k8 16 W
Condition $C0kA 16 W

Operand $C0kC 32 R/W

l. All transfers are byte swapped from normal 6502/65816 storage; that is, the

MSB of the data is contained in the lowest memory address.

2. k is the number of the slot containing the NC-R +8

3. Word transfers (16 bits) to the Operand register use addresses $C0kC and

$C0kD. Multiple word transfers (32, 64, 80, and 96 bits) use all four locations

($C0kC-$C0kF). Note that for 80-bit transfers, the first data transfer requires that

$C0kE and $C0kF receive $0 values and that bits 65 to 80 are transferred to

$C0kC and $C0kD.

4. All locations are in the I/O page ($00 or $E1) of 65816 RAM space.

5. All locations are in page $C0 of the 6502 RAM space.

21

The NumberCruncher Reloaded fully supports Motorola's

MC68881 coprocessor dialog. The dialog consists of a rigidly

structured combination of commands and response primitives.

The commands tell the MC68881 what to do, and the primitives

indicate actions that are required, including: transfer data, wait for

synchronization, wait for completion of operation, and handle

error conditions. Failure to follow the coprocessor protocol can

result in destruction of your code during program execution.

The NumberCruncher Reloaded allows three types of operations:

Memory-to-Register (MEMREG). Register-to-Memory (REGMEM),

and Register-to-Register (REGREG). MEMREG and REGMEM

operations may be done at any precision. REGREG operations are

always done in extended precision.

MEMREG and REGMEM operations move data from Apple memory

to a MC68881 floating point, control, or status register, and from a

MC68881 floating point, control, or status register to Apple

memory (refer to the flow chart in Figure 3). These operations are

often called move-in or move-out operations, respectively. They

require that the software

1. Write a command word (16 bits) to the Command register

($C0k8)

2. Check the word in the Response register ($C0k0) for a Null

Come-Again (CA) (any value other than $8900)

3. Transfer the operand byte(s) to or from the Operand register

($C0kC)

4. Check the word in the Response register ($C0k0) for a Null

Release (i.e., the most significant bit - CA bit is equal to 0)

How the

NumberCruncher

Reloaded transfers

Data

MEMREG and

REGMEM Operations

22

The $8000 and $8900 signify that the values are written the

way the MC6888x expects to write them; however, the

6502/65816 must read and write all data in byte reversed

order ($0089 in this case). The reason for the byte reversal

is that the 6502 and the 65816 write the low byte of the

accumulator to the low byte of memory or to a peripheral

slot – they are little-endian CPUs. This is opposite to the

requirements of the MC68xxx series, which are called big-

endian CPUs. Hence, the 6888x expects or reports the most

significant byte (MSB) as the low address byte. You must

transpose the byte order of all data (including 80-bit data)

to satisfy the MC6888x. Remember this because it applies to

every command or operand transfer to, and operand and

response transfer from the NumberCruncher Reloaded.

You might even be wondering why we check for a value of

$8900. The answer is adaption. If the MC6888x was being

used with an MC68020 microprocessor, the value read from

the Response register would indicate the number of bytes

to be transferred. In FPE applications, the MC6888x does the

same, but the 6502/65816 cannot easily make sense of this

value. So, to improve processing time, it was noted that

$8900 is the only response primitive that requires the

6502/65816 to wait before transferring data. Any other value

from the Response register of the is FPE implementation

indicates that the 6502/65816 may transfer an operand.

▲ Warning: Do not try to test for a non-$8900 value as this

will confuse the MC6888x and destroy any data in the

NumberCruncher Reloaded. ▲

Fig.3

23

REGREG operations are used for operations that do not

require operand data from memory to register transfers

(refer to Figure 4). Examples include adding two registers

(both registers having a data value), taking the sine of a

value in a register or even transferring a constant value

from the ROM internal to the MC6888x to a register. The

sequence of operations is:

1. Write the command to the Command register ($C0k8)

2. Check the Response register for a Null Release ($C0k0)

Since there are no external operands, a REGREG

operation does not require that the software test for a

Null Response in the Response register as the MEMREG

and REGMEM operations do. Once it has written the

command to the Command register (with correct byte

order), the software need only test the Response Register

for the Null Release.

▲ Warning: Again, don’t try to test for a non-$8900 value

as this will confuse the MC6888x and destroy any data in

the FPE. ▲

REGREG Operations

Fig.4

24

Here are some Example code segments for checking the status

from the NumberCruncher Reloaded. Let’s start with a 65c816

version:

 ldy #response

loop1 lda [<mc68881],y assumes the location containing

the base address of the NR-C is

in the direct page

 cmp #$0089 check for Null Come-Again

 beq loop1

 ldy #response

loop2 lda [<mc6888Il,y check for Null Release

 and #$0080

 bne loop2

The same again, now for your Apple II 6502 processor:

loop1 ldy #response

 lda (mc68881),y check for Null Come-Again

(location containing the base

address of the FPE is somewhere

in memory, location designated

by mc68881)

 tax

 iny

 Ida (mc68881),y

 bne loop2

 cpx #$89

 beq loop1

loop2 ldy #response

 lda (mc68881),y check for Null Release

 iny

 lda (mc68881),y always must read upper byte

 asl a

 bcs loop2

For greater detail about construction of an MC6888x command,

register- and operation-values, constants in ROM please refer to

Appendix A, giving you more in-depth information.

25

Programming

There are many ways to have your programs talk to the

NumberCruncher Reloaded and thus have its floating-point

performance enormously sped up.

Let’s start with the lowest level, Assembly language.

In the previous Chapters we already saw some very low-level

assembly coding. To make things easier the NumberCruncher

Reloaded comes with macro library files developed by iS back in

the days. These files are compatible with the APW, ORCNM,

LISA816, and MERLIN assemblers. M16.FPE, in conjunction with the

E16.EQU file, (for LISA816 use only M16.68881) contains macros

for use with the 65816 microprocessor in the Apple IIgs. M8.FPE

contains the macros for the 6502-based Apple computers. These

macros are assembler specific and are contained in folders labeled

for the appropriate assembler.

The macros define the command for each operation desired. You

just need to supply the operation wanted, the address of the

correctly formatted data, and the register(s) to use. These macros

will load or retrieve the results of the operation. The general format

of the macros is as follows:

Assembly

Chapter 4

26

APW/ORCA/LISA816 Assembly

Memory-to-Register:

MEMREGv OPERATION_CODE, DESTINATION_FP_REG, DATA_ADDRESS

where v = precision of operation (X, D, S, L, W)

Register-to-Memory:

REGMEMv OPERATION_CODE, SOURCE_FP_REG, DATA_ADDRESS

where v = precision of operation (X, D, S, L, W)

Register-to-Register:

REGREG OPERATION_CODE, SOURCE_FP_REG, DESTINATION_FP REG

MERLIN Assembly

Memory-to-Register:

MEMREG PREC;OPERATION_CODE;DESTINATION_FP_REG;DATA_ADDRESS

where PREC(ission) = X, D, S, L, W

Register-to-Memory:

REGMEM PREC;OPERATION_CODE;SOURCE_FP_REG;DATA_ADDRESS

where PREC(ission) = X, D, S, L, W

Register-to-Register:

REGREG OPERATIOCODE,SOURCE_FP_REG,DESINATION_FP _REG

27

The source code below is an example of macro usage and shows

the form for code which uses the NumberCruncher Reloaded.

**

* SAMPLE TASK FOR ADDING TWO EXTENDED PRECISION

* NUMBERS, SHOWING THE USE OF MACROS

**

MLOAD 2/AINCLUDE/M16.UTILLITY

MLOAD M16.FPE

TEST START

COPY M16.FPE

MC68881 EQU $00 ; DIRECT PAGE LOCATION OF FPE

CLC ; BASE REGISTER

PHK

PLB

STZ $00 ; ZERO DIRECT PAGE DATA

STZ $02

PUSHLONG LOCATION_OF FPE+2 ;PUT NC-R ADDRESS ON

PLA ;STACK AND STORE FPE ADDRESS IN DIRECT

STA $00 ;PAGE

PLA

STA $02

Al MEMREGX FMOVE,FP1,EXT_1 ; DATA IN REG1

A2 MEMREGX FADD,FP1,EXT_2 ; ADD 2nd VALUE

A3 MEMREGX FMOVE,FP1,ANS_1 ; GET RESULT

 RTL

LOCATION_OF_FPE DC H'C0C0 0000' ; ASSUME SLOT 4

; FLOATING POINT EXTENDED DATA AREA

EXT_1 DC H'0000 0000 0000 8000 3FFF ; Value= 1.0

EXT_2 DC H'0000 0000 0000 8000 3FFF

; RESULT SHOULD BE '0000 0000 0000 8000 4000' OR 2.0

ANS_1 DS 10

END

28

The de-facto standard C-compiler ORCA/C already comes with FPE

support, i.e. the NumberCruncher Reloaded is supported out of

the box. You can either just go ahead and simply use the build-in

floating-point library which in turn uses SANE . If the SANE patch

INIT is installed, your C code will be accelerated automatically.

The even faster alternative is to replace the SANE-based library with

one talking to the NumberCruncher Reloaded directly.

To achieve this, you have to replace the “SysFloat” library located

in your ORCA/C “Library” folder with that provided in the folder

called “FPE”.

Additionally, you have to add these two lines to your code:

#pragma float 1 1

#define __FPE__ 4 /* FPE card's slot number */

Please refer to the ORCA/C manual for more information.

❖ Check https://github.com/byteworksinc/ORCA-C to make sure you

have the latest patches installed. ❖

Yes, you can put the NumberCruncher Reloaded to use in

Applesoft BASIC, too!

In 1989 Glen Brendon wrote a cool so-called ProCMD module

which sets up an interface between Applesoft programs. The

downside is, that it uses some 65816/65802 specific commands.

▲ Warning: The interface requires an IIgs, or a IIe with a 65802

processor. The program does not check whether it is running in

such an environment and will crash horribly if you try to use it on a

machine with only a 6502 or 65C02. ▲

To use this module put the FPE file in memory by an instruction

"-FPE" from Applesoft immediate mode or a PRINT CHR$(4)"-

FPE" from a program.

C Language

Applesoft

https://github.com/byteworksinc/ORCA-C

29

These things are speeded up: SIN, COS, TAN, ATN, X^Y, LOG, EXP,

SQR, RND, multiplication and division. Here are some timing examples:

Function Applesoft NC-R factor

SIN 102 13,9 7.34
COS 103 14.0 7.36

TAN 187 14.0 13.36

SQR 172 13.8 12.46

^ 219 23.0 9.52

* and / 51.4 18.4 3.52

RND 24 12.5 2.60

On the provided disk/archive you’ll find this module in the “Applesoft”

folder as well as being used by the Mandelbrot generator in the

“Fractal” folder.

30

1. If the NumberCruncher Reloaded returns $0D1D in the response

register, then the attempted operation was invalid (aka “protocol

violation”).

The only way to recover, short of powering off the system, is to call

SANEReset from the toolbox or to use the following code:

lda #0

sta FPE_restore ;(base register + 6)

lda FPE_restore

Note that this is a 16-bit operation. If you are using a 6502/65C02-

based system, you must do two 8-bit writes and two 8-bit reads.

❖ In contrast to its predecessors the NumberCruncher Reloaded has

an error-LED (RED) which lights up in case of a protocol violation.

The error-LED will only switch off again after a reset or power-cycle

of your Apple II ❖

2. When using the FPE Toolset from Pascal, C, or Basic, save

intermediate results in the extended format. Use of other formats

forces the compiler to convert your data values to and from

extended, operations which will increase the execution time of

your programs.

3. Whenever possible, store intermediate results in the

NumberCruncher Reloaded (i.e. FPU registers). Register-to-register

operations can provide more than 10 times the performance of

memory-to-register operations.

4. The NumberCruncher Reloaded contains five (5) ID bytes of which

the first 4 are conform to the Apple standard. These bytes and their

locations are:

Programming Hints

31

Location Value

$(00)Cx05 $38

$(00)Cx07 $18

$(00)Cx0B $01

$(00)Cx0C $AF

$(00)Cx0D $Fz - Revision of firmware
where x = the slot number.

The 5th byte is a NumberCruncher Reloaded specialty and returns its

firmware revision. Its “high-nibble” is always set and can be used to

differ a NC-R from the FPE or original NC. The lower nibble represents

the firmware revision starting with “1” – thus the first release will return

$F1.

❖ Before reading the data in these locations, slotROM must be enabled

by writing a value to $(00)C00B. Once done, the slot ROM must be

disabled by writing a value to $C00A.

Note that all accesses to the values should be done with the computer

in 8-bit (short) index or accumulator mode. ❖

32

The 68881/2

The Motorola MC68881 or 68882 used on the NumberCruncher

Reloaded is the same floating point processor used in a 68020 or

68030 Apple Macintosh and many other 68k computers.

Although you may need not be concerned with specific capabilities

of the NumberCruncher Reloaded, software and programmers

have access to:

• Eight general purpose, 80-bit floating-point data registers.
• Forty-six instructions, including 35 arithmetic operations.

• Full ANSI-IEEE 754-1985 floating point standard.

• Enhanced functions, including a complete set of trigonometric

and transcendental functions.

• Seven data formats: byte, word, and long word integers; single,

double and extended precision real numbers; and packed

binary coded decimal string real numbers.
• Twenty-two constants like pi. e. and powers of 10.

• Concurrent instruction execution with the Apple II.

We cannot cover the complete MC6888x functionality, registers,

commands and everything beyond in this little manual.

Luckily Motorola published a very detailed manual which is also

available as PDF file at the NumberCruncher Reloaded webpage (or

just google for it).

So these pages are intended to give you a brief overview what’s

going on behind the scenes.

Appendix A

33

For signed integers the 6888x FPUs have the same formats as the 68k

CPU. That is: 8-bit byte, 16bit word and 32bit long.

For real data 4 formats are supported: Single-, Double- and Extended-

Real as well as Packed Decimal Real.

The 6888x’ have eight 80bit FP data registers as well as 3 special

registers all of which are extensively described in the MC68881

Manual. It is recommended to read that description thoroughly.

Data formats

34

Each command written directly to the floating point coprocessor

Command register requires 16 bits of information. The format for

the command (as seen by the MC6888x) is:

MSB LSB

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 R/M 0 S S S D D D 0 0 C C C C C

Where:
[R/M] Field - Specifies the source operand address

mode.

0 - The operation is register to register.

1 - The operation is memory to register or

register to memory

[SSS] (Source Specifier Field) - Specifies the

source register or data format.

If R/M = 0, specifies the source floating point

data register, FPm.

If R/M = 1. specifies the source data format:

000 L Long Word Integer (32-bits)

001 S Single Precision Real (32-bits)

010 X Extended Precision Real (96-bits)1

011 P Packed Decimal Real (96-bits)2

100 W Word Integer (16-bits)

101 0 Double Precision Real (64-bits)

110 B Byte Integer (8-bits)

[DDD] (Destination Register) - Specifies the

destination floating point register, FPn.

[CCCCC] (Execution Command) - Specifies the

operation to perform.

NOTE
1. Only 80 bits contain valid data. but 96 bits must be transferred.

2. Only 84 bits contain valid data. but 96 bits must be transferred.

3. See "MC68881/MC68882 Floating-Point Coprocessor User's Manual", pages 3-
1,3-2, and 3-7 for format information)

4. All operations which input data to the FPE transfer information from the

source (SSS or memory) to the destination register (DOD). This means that the

source value is moved (e.g. added) to the destination register.

5. All register-to-register operations move data from the source register to the
destination register (e.g. the source register is added to the contents of the

destination register).

Construction of an

MC68881/68882

Command

35

The already mentioned library files E16.FPE and E8.FPE contain

macros and definitions for the R/M and Source Specifier fields, the

Destination Register field and the Execution Command field. While

these macros will generate the most used commands for you, it might

be interesting to know how to define a command e.g. to add an

extended real number to register #1:

First, get the Memory-to-Register Extended Precision value from this

Command Primitives definitions table:

Register-to-Memory Movement
Single Precision $6400

Long Integer $6000

Word Integer $7000

Byte Integer $7800

Double Precision $7400

Extended Precision $6800

Packed BCD $6C00

Memory-to-Register Movement

Single Precision $4400

Long Integer $4000

Word Integer $5000

Byte Integer $5800
Double Precision $5400

Extended Precision $4800

Packed BCD $4C00

Register -to-Register Movement
Extended Precision (only) $0000

Constant in ROM-to-Register Movement (see Table 6.14)
Extended Precision (only) $5C00

Constructing a

command

step-by-step

36

Memory-to-Control. Status or Instruction Register

Long Integer (only) $0000

Control. Status or Instruction Register-to-Memory
Long Integer (only) $2000

Second, get the value for Floating Point Register 1 from the table
below and put this value into the Destination register field (DDD,

bits 7-9). The command word should now be $4880.

Floating Point Register 0 %000

Floating Point Register 1 %001

Floating Point Register 2 %010

Floating Point Register 3 %011

Floating Point Register 4 %100

Floating Point Register 5 %101

Floating Point Register 6 %110

Floating Point Register 7 %111

Control Register $9000
Status Register $8800

Instruction Address $8400

Third, put the value for the desired command into bits 0-4. From

the definition file (see the following table for Operation Values),

FADD equals $22. The final command word should now be $48A2.

 Important: Remember that the word is in “reverse order” (known
as big-endian) as seen from the Apple II computer.

So you have to swap the data bytes. The value for the command in

6502 little-endian form is, therefore, $A248.

Similarly, a register 1 (SSS value) to register 2 (DDD value) add

would have a final command value of ''%0010001000000101'' or

$2205 in Apple II little endian notation.

37

The 16-bit binary values for commands are given in non-Apple

memory order

FMOVE $00 Move

FINT $01 Integer Part

FSINH $02 Hyperbolic sine

FSQRT $04 Square Root

FLOGNPI $06 LOGe(1+X)

FETOXM1 $08 ((e**X)-1)

FTANH $09 Hyperbolic tangent

FATAN $0A Arctangent

FASIN $0C Arcsine

FATANH $0D Hyperbolic arctangent

FSIN $0E Sine

FTAN $0F Tangent

FETOX $10 e**X

FIWOTOX $11 2**X

FTENTOX $12 10**X

FLOGN $14 Natural log

FLOG10 $15 Log base 10

FLOG2 $16 Binary log

FABS $18 Absolute Value

FCOSH $19 Hyperbolic cosine

FNEG $1A Negate

FACOS $1C Arccosine

FCOS $1D Cosine

FGETEXP $1E Get exponent

FGETMAN $1F Get mantissa

FDIV $20 Divide

FMOD $21 Modulo Remainder

FADD $22 Add

38

*) FSINCOS requires three registers, one source and two

destinations, and is a register-to-register operation only. The

form for this command is:

%00SSSDDD0000ddd + operation

ddd = destination 2 register (cosine value)

DDD = destination 1 register (sine value)

SSS = source register

FMUL $23 Multiply

FSGLDIV $24 Single precision divide

FREM $25 IEEE Remainder

FSCALE $26 Scale exponent

FSGLMUL $27 Single precision multiply

FSUB $28 Subtract

FCMP $38 Compare SSS with DOD

FTST $3A Test

FSINCOS $30 Simultaneous sine and cosine *

You have reached the end of this manual.

While it was fun to read, it’s static and will not change.

To get recent, ever-changing updates and more background information visit

www.geekdot.com/numbercruncher-reloaded/

to learn more about the NumberCruncher Reloaded, download software

and all those things which this poor manual made from wood pulp can’t do.

And again, thank you for your purchase!

Manual version 1.0a for NumberCruncher Reloaded v.1.0

© 2021 Axel Muhr, The Geekdot Laboratory.

Created with ❤ at the

