4860 MotherBoard
Reference Manuq_l

Revision 1.7 May 25, 1991
Copyright 1989, 1990

Hauppauge Computer Works, Inc.
91 Cabot Court

Hauppauge, NY 11788 U.S.A.
Telephone: 516-434-1600

Fax: 516-434-3198

Table of Contents

4860 MotherBoard Reference Manual

Revision 1.7 May 25, 1991ccooooiieiiiiieicecee, i-1
Installing the 4860 MotherBoard
A quick guide to first-time installation...............cc..coocvovennnn. 1-1
Run the BIOS Setup program..............ccooeeiiciieeeeeeeen, 1-2
Run the EISA Configuration Utilityccoo.. 1-3
Installing i860/APX with the EISA 1.00 (and above) BIOS .. 1-4
Setting the memory size of APXc.coooiiiiveoeieeeeeeeee . 1-5
Installing the PS/2 style mouse cablecccooeveee.. 1-5
Guide to jumpers and connectors
PS8 Power supply connectionooveeeveevoeeeeeeeennnnn. 2-1
PS9 Power supply connection.................cccccoeeeeveeeenn... 241
PS10 Auxiliary power connectionc.ccccocveveueunn... 2-1
J19 Speaker output CONNECION............coeeveeeeeeeeeee. 2-1
J9 Reset switch connector..........ccoocooeeeviiiiiie. 2-1
J11 486 Turbo CONNECLONoveeeeeteeieieee 2-2
J21 External CMOS battery connector...............co........... 2-2
J23 PS/2 compatible mouse interface connector 2-2
J1, J3-J8 EISA 8/16 bit connectors...........cccccoeeveveeeevennnnnn. 2-2
J2 ISA compatible 8-bit connectorcoveeeevenn... 2-2
J10 64-Bit expansion coOnNECtOr............ccccveveeveerereeenn, 2-2
J20 Keylock/Power LED connectorccccccoovvvinnnen... 2-2
J22 DIN-5 Keyboard connector.............c.ccooovevivvveeennn 2-3
JP1 i860 timer interrupt jUMPer.........coovvvvivveeeceeceeen. 2-3
JP3 Mouse Interrupt (IRQ12) jumper..........ccooveveennenn.. 2-3
JP11....2x4 Keyboard configuration header.......................... 2-3
JP12.... Future i860 mode supportc.cccoveeievceceeeraen. 2-3
JP13.... Delayed ADS JUMPET........cccuieiueeriiereeeeeeececeeeeeans 2-3
JP14.... 25/33MHZ JUMPET ...t 2-3
JP15 ... Turbocache Module write protectccccceeveneen.. 2-3
JP2 ... Turbo Cache moduleccovveeiiiricreiiecne 2-3
SW1 ... Monitor select/Burn-in test jumper...............c........... 2-3
Parallel 1/O port jumpers and connector............c.....cuuu..... 2-4
JP8 Parallel port address select jumper.................... 2-4

JP9 Parallel port interrupt enable jumper................. 2-4

J15 Parallel port connectoroeeeeeeeeerereen, 24

Serial I/0 port jumpers and connectors..............co.oovveeeen.... 2-5
JP4 Serial port A address select jumper.................... 2-5
JP5 Serial port A interrupt enable jumper................. 2-5
JP6 Serial port B address select jumper................... 2-5
JP7 Serial Port B interrupt enable jumper.................. 2-5
J13,J14 COM1/3 and COM2/4 connectors............ 2-5

4860 MotherBoard Revision C changes:...........cocococvveun...... 2-6
JP18 ... 64-bit slot write seleCtccococoeveeerennn.. 26
JP16 ... Reserved ..., 2-6
JP17 ... Reserved ..o 2-6
JP10 ... No longer neededc.c.cooooeevonenn. 2-6

Adding additional memory
4860 EISA MotherBoard Diagrams

4860 MotherBoard Block Diagramccoovvveeeennn.. 4-1
4860 EISA MotherBoard layoutccoooovveeeeeeererennn 4-2
486 /860 Processor orientations, SIMM connectors 4-3
MOUSE CONNECIONcueeeeeeceeeceeee e 4-4
JUMPET I0CALIONS ..., 4-5
EISA Configuration Utility
Trademark InfOrmation..............oeueeeueeeeemeeeeeeeeeeeeeeeeeess 5-1
Introduction to the EISA Configuration Utility....................... 5-1
Command Reference..............oo.oeeeeeeveeeveereseeeeeeeeseso, 5-4
Using the main MenUocoucueuiueeeeeceieeeeseee e, 54
Using the SUbMENUS.............cooveeemeeeeeeeeeeeeeeeeeee e 54
Using dialogue BOXeSc.ccueueeemveeeeereeeereeeeer 5-6
USING SCTEENScuverreineceeeceeeeee et 5-7
Getting Nelpccoverireeeecceee e 5-7
Main Menu Selections...............oeoeeeeeeeeeeeeeeeeeeeeseeee, 5-8
Learn about configuring your computer 5-8
Configure COMPULETcooevieeeeeeeeeeeeeeeeeeerese 5-8
Copy configuration (CFG) filescoveveoreeereeerereen, 5-8
Configure computer - basic methodooocveveen....... 5-8
Configure computer - advanced method 5-9
Return to main MeNnU............c.oooveeieceieceereeeeeeeeennn, 5-12
Set date and timec.coeueeieeeeeeeeeeeeee e, 5-12
Exit from this Utilitycocovveveeiieeeeeeeeeeeeeee, 5-12

Starting the Configuration Utility from a fixed disk................ 5-13

Installing the Utility on a Fixed Diskcccccoevveenen.... 5-13
Starting the ULilitycoeveverecceieeeeceee e 5-13
Starting Configure Computer selection from a fixed disk5-14

i860/APX Attached Processor Executive

OVBIVIBW ...ttt 6-1
Installing i860/APX-DOScovomeeeeieceeeeeeeeee e, 6-2
Installing 860/APX under UNIX Vcccooveeneeeee, 6-3
Programs included with i860/APX..........cc.ccoovemmveeeeererennn.. 6-6
i860 development tOOIS............ccouveeeememeeeeeeeeeeeeeeeeeeeee, 6-7
COMPIIEFS.....ceiiiiii et 6-7
Other i860 t0OIS.......ccoovruiuieeiiee e, 6-7
Discount coupons for compilers.............c.oceceeeeeeeeeerenernn.. 6-7
Portland Group discount couponccccccoeueuenn..... 6-8
Using VGA display adapters from the i860
Housekeeping: Initialization and Termination 7-1
VGA Library FUNCLIONS...........c.ccouvviueeeeeeeeeeeeeeeeeeee e 7-2
Global Variablesoueuiuiueieeeeeeineieceeeeeee e eeseeres s 7-4
Direct Access to Video RAM..............ccoueveeevieeeceeeereen, 7-4
Using the i860 Assembler, Linker and Debugger
Running the i860 Assembler.............ccooeeeeeeeeeeeeeseeeenan, 8-1
Running the iB60 LINKETc.ceuevrieeeeieceeeeee e, 8-2
Executing an i860 program and using the i860 Debugger .. 8-5
i860 Debugger Commands...........ccccooveevviveceeeeireeennn. 8-6
i860 processor registerscoceeevvevveeecveeneeeeeseeenn, 8-7
Source code debug statements..............ccccerrreeuennn.... 8-8
Debugger restrictions...........ccococeeeevvveeiecincieereeeeenn 8-9
4860 Programmers Reference
I/O Port Summary (ISAJEISA)couvieeeieeeeeeeee e, 9-1
I/O Port Summary (EISA ONLY)c.ouiuieeereeeeeeeeereeererenn. 9-2
486 Processor Memory Map..........ccoeeevveieiieceneeeeeeenn. 9-2
860 Processor Memory Map............ccooeeeveeveieeeceeeeeeeeenen. 9-2
4860 Frame Buffer Memory Mapc.cccooevevvvieceeneeeen. 9-3
4860 MotherBoard Configuration Register.............co........... 9-3
Mapping RAM........ccooeeecerere e 94
860 Processor Configuration Register..............ccooeveveueenn... 96
860 Processor Interrupt Controlleroooeeeeveeeeeeeenannn. 8-7

Master/NON-Master EISA /O SIOtSooueeeeeeeeeeeeeeeeeeeea 9-8

EISA SIot AdAresses.........oooveeeeomeeeeeeeeeeeeeeeeeeeeeeeee g9-8

Keyboard Controller Input Port................ccccoeemneeeevererrernn. 9-9
486 Attention INLerrupt.........ccccevevveverereeeccee e, 99
860 Attention INterrupPt.........cc.oveveciveeieieceeec e, 9-10
486 BIOS Special FUNCHONSo.ooeoeeeeeeeeeeeeeeeee 9-10
860 BIOS FUNCHONS......ccocovuiuertmiiceeceeeee e 9-10

Heartbeat demo

Frame Buffer Demo

Installing the 4860
MotherBoard

A quick guide to first-time installation
Note: When using the EISA BIOS version 1.00 and above, the
Power-On self test program will display the message "Slot 00
error: .." during the first-time installation. This message can be
ignored, because it alerts us to the fact that the EISA configura-
tion has not yet been set.

Also, note that the BIOS Setup program uses the cursor keypad
and the +- keys to move through the BIOS Setup and to set
the BIOS options.

Step 1 - Install the 4860 MotherBoard, connect the power
cables, the keyboard, speaker, reset connector, and install just
the video adapter. The board as shipped from the factory has
been jumpered and tested with both ISA and EISA disk control-
lers and the MotherBoard’s serial and parallel ports have also
been tested. The only jumper that might need to be changed is
the monitor type jumper. The factory setting is color. It needs
to be changed when using a monochrome monitor. The chapter
entitled "Guide to Jumpers, .." describes the 4860 MotherBoard
jumpers.

Step 2 - Turn on the power, and look for the Power-On self test
messages. A CMOS RAM error message, and several other
error messages will appear:

PRESS F1 TO CONTINUE OR CTRL-ALT-ESC TO ENTER SETUP

This is normal since the BIOS and the EISA configurations have
not yet been set. One common problem is the "Configuration
error" message which appears if the monitor type has not been

Installing the 4860 MotherBoard 1-1

set correctly. Check the BIOS Setup program or the 4860
MotherBoard monitor type jumper.

Run the BIOS Setup program

Step 3 - Run Setup by typing Control-Alt-ESC (at the same
time). Set the time, date (remember to use the +- keys) and
floppy diskette types. Check to see that all of the memory that
has been installed has been detected. As an example, on a
4MByte system the following configuration will be seen:

Base memory: 640K

Extended memory: 3072K

Expanded memory: OK

Other memory: 384K

Total: 4096K

if using an MFM or IDE disk drive, set the hard drive type to
the correct value.

If you are using an ESDI controller, set drive type to 1 or 2
(check with the disk controller manufacturer for the correct

entry).

If using a SCSI controlier, normally the drive type should be set
to NONE. But be aware that some SCSI controllers will require
the drive type to be setto 1.

If your MFM or IDE controller does not have a drive type that
matches its parameters, there are two configurable drive types,
48 and 49, where you can set custom parameters. After enter-
ing either 48 or 49, use the right arrow key to get to the dif-
ferent parameters for your hard disk drive. Remember, since
this is a custom hard disk drive type, write these parameters on
a label that can be placed on the outside of your PC just in
case the CMOS RAM is erased.

Hit the "PgDn" key (page down) to go to the next BIOS Setup
screen. Here you can enable or disable the CPU cache, the
BIOS cache and the Video cache. We recommend that all
items be ENABLED. You can experiment with the effects on

installing the 4860 MotherBoard

performance by disabling the settings later on, but for now
enable everything.

Leave the Default speed setting at HIGH and the Slow speed at
FAST.

Hit F10,F5 to save the CMOS Setup and to exit the Setup
program.

Step 4 - Turn the power off, and install the floppy disk controller
(or combination floppy/hard disk controller). Connect the
cables to the floppies and make sure the power is also con-
nected to the floppies.

Install a DOS disk (DOS 3.3 recommended) and turn the power
back on. The Power-On self test program might display an
"Error intitalizing hard disk 0" since the hard disk is not con-
nected. This is 0.k. Boot DOS from the floppy disk.

Run the EISA Configuration Utility
Step 5 - Now that DOS has been booted from the floppy, the
EISA configuration must be set. The Hauppauge 4860 Mother-
Board is provided with an EISA Configuration diskette that con-
tains a program called CF. This diskette must be put in the flop-
py disk drive and the program CF should be run.

In systems without an EISA disk controller, the key sequence to
set the EISA configuration is simple: enter, enter,F10,S,X and
then choose Save Configuration and Exit. This will save the
minimum EISA information required for use with non-EISA disk
controllers.

In systems with an EISA /O controller, before the CF program
is run, the configuration program provided by the controller ven-
dor must be copied onto the the Hauppauge EISA Configura-
tion diskette. Then run CF, following instructions from your 1/0
controller manual. To save the EISA configuration once it has
been set in the CF program, type F10,S,X and then choose
Save Configuration and Exit.

Installing the 4860 MotherBoard 1-3

Step 6 - Now that the BIOS has been set, and the EISA con-
figuration has been saved in both the CMOS RAM and the dis-
kette, you can connect the hard disk drive and boot.

If the battery that holds the CMOS RAM ever drains while the
power is turned off, you must run the BIOS Setup, then run CF,
using the old parameters saved on the diskette.

If you add or remove EISA I/O cards from the system, you need
to run CF to modify the system configuration.

Installing i860/APX with the EISA 1.00 (and above) BIOS

When installing i860/APX, there are two extra steps in the setup.
These steps partition the memory system between the i860 and
the 486 processor.

The memory partitioning puts a gap in the memory space be-
tween the i860 and the 486. This gap is necessary so that 486
programs such as UNIX or 0OS/2 do not try to "grab" all of sys-
tem memory for themselves.

To partition the memory, run the program CFG4860, which can
be found on the EISA Configuration diskette. On the second
screen, move the cursor with the down arrow key to the i860
memory option. Hit 8M (to select 8MBytes of memory for the
i860; from 4M to 16MBytes can be selected for the i860), and
then down arrow once more. Now hit F10, F5 to save this
memory configuration.

Once the memory configuration is saved, it is necessary to do a
hard reset (push the reset button or turn off the computer).
After the hard reset, during the Power-On-Self-Test a message
will appear stating MEMORY SIZE ERROR. This is o.k. since
we have just changed the amount of memory seen by the 486
processor. Just hit F1 to remove this message.

To check the memory configuration, run INFO4860 (also on the
EISA Configuration diskette), and observe the i860 Dedicated
Memory setting. Due to a bug in INFO4860, please ignore the

Installing the 4860 MotherBoard

message: i860 Not Present.

Note: It is not necessary to change the i860 memory size in
the program "CF" once this has been set using CFG4860.
Though you will find an entry for i860 memory size in CF, it is
not necessary to change this entry.

Setting the memory size of APX
Note: The following procedure is necessary only for i860/APX
versions 1.7 and below. With version 1.8, the memory size is
automatically configured.

iB60/APX has the memory configuration set during the APX in-
stallation. If any other memory configuration is used, the APX
driver in UNIX must be told of this new configuration. There is
a file called "kernel.cfg" which has been installed during the APX
installation procedure which must be modified. The file is typi-
cally found in the /usr/apx5/gen/src/ker860 directory under
UNIX, and the /usr/apx5/ker860 directory in i860/APX-DOS.

The two entries that need to be changed are:
ev_memory_size= 8
host_memory_size=8

The 8 is an example showing 8MBytes. For example, if the 486
memory is 16MBytes, then change host_memory_size to 16. If
the i860 memory size changes, then change the
ev_memory_size entry. Note that this must be done after in-
stallapx is run.

Installing the PS/2 style mouse cable
The cable for the PS/2 style mouse connector consists of two
pieces:

« Cable: 10 pin header to female DB-9
« Adaptor: DB-9 male to PS/2 style DIN
The 10 pin header is instalied on the 4860 MotherBoard in con-

Installing the 4860 MotherBoard 1-5

ector J23 (located near the Power Connector). See diagram
4.3 in the 4860 Reference manual for its location. Pin 1 of the
cable is near the red stripe. The mouse will not work if the
cable is plugged in backwards. Make sure the red stripe is
towards pin 1 of J23.

The DB-9 female connector on the 10 pin cable is normally
mounted on a bracket of the system chassis. The DB-9 to PS/2
adaptor is then attached to DB-9 female connector from the out-
side of the chassis.

Installing the 4860 MotherBoard

Guide to jumpers and
connectors

Note - * indicates default setting

PS8 Power supply connection
1= /PWRGOOD from power supply

2= +5 Volts
3= +12 Volts
4= -12 Volts
56= GND
PS9 Power supply connection
1,2= GND
3= -5 Volts

456= +5 Volts

PS10 Auxiliary power connection
Connects to PC Power & Cooling Model TURBO-450 power
supply. Key is at pin 2.
1,23= +5 Volts
4,56= GND

J19 Speaker output connector
1= +SPKR

2= N.C.
33 = -SPKR
4= +5 volts

Jo Reset switch connector
*Open = run
Short = reset

Jumpers and connectors

J11 486 Turbo connector
1= VCC
2= Turbo LED output (sink)
3,4,5= N.C.
6= TURBO Control
7= GND

J21 External CMOS battery connector
1= +VBB (minimum +4.5v, max 6v)

2= N.C.
3, 4= -VBB (normally ground)

J23 PS/2 compatible mouse interface connector
Note: Re1quir&s sEeciaI cable. See diagaram in Chapter 3.
= Cloc

2= Data
4 = Signal Ground
5= +5 Volts

3,6,7,8,9,10 = Shield Ground
J1, J3-J8 EISA 8/16 bit connectors
(J1, J3-J6 and J8 are EISA MASTER capable,
J7 will not allow EISA bus masters)

J2 ISA compatible 8-bit connector

J10 64-Bit expansion connector
(to be supplied in a future revision of this manual)

J20 Keylock/Power LED connector

1= GND
2= KEYLOCK
3= GND
4= [KEY]
= +5 Volts

2-2 Jumpers and connectors

J22 DIN-5 Keyboard connector
1= CLOCK 4= GND

2= DATA 5= +5 Volts
3= N.C.

JP1 i860 timer interrupt jumper
*2-3 (61.7911 msec)
1-2 (30.8955 msec)

JP3 Mouse Interrupt (IRQ12) jumper
*1-2 = No interrupt generated

2-3 = Enable mouse interrupt

JP11 2x4 Keyboard configuration header
Do not change unless instructed for a Keyboard BIOS upgrade

JP12 Future i860 mode support
*Closed = DO NOT INSTALL

JP13 Delayed ADS jumper
*2-3= DO NOT CHANGE

JP14 25/33MHz Jumper
Short= 25MHz

Open= 33MHz

JP15 Turbocache Module write protect
Open = write protected item cached by 486 & Turbocache

Short= write protected item cached by Turbocache only

JP2 Turbo Cache module
*In= Turbo cache not installed

Out = Turbo cache installed

SW1 Monitor select/Burn-in test jumper

*Open selects Monochrome
1-2 selects burn-in test

2-3 selects color monitor

Jumpers and connectors 2-3

Parallel 1/0 port jumpers and connector

JP8 Parallel port address select jumper
1-2 = LPT1 (port 03BCh)
*2-3 = LPT2 (port 0378h)

JP9 Parallel port interrupt enable jumper
*Short= LPT1/2 generates IRQ7

Open = No interrupt generated

J15 Parallel port connector
NOTE: Cable straight from 2x13 header to DB25 connector

NOTE: Pin 1 is LEFT-BOTTOM and goes to pin 1 of DB25

1= /STB 2= /AFD

3= D0 4= [ERR
5= D1 6= /INIT

7= D2 8= /SLIN
8= D3 10= GND
11= D4 12= GND
13= D5 14= GND
15= D6 16= GND
17= D7 18= GND

19= /ACK 20= GND
21= BUSY 22= GND
23= PE 24= GND
25= SLCT 26= GND (not used on DB25 connector)

2-4 Jumpers and connectors

Serial /O port jumpers and connectors

JP4 Serial port A address select jumper
*1-2 = Port A is COM1
2-3 = Port Ais COM3

JP5 Serial port A interrupt enable jumper
*Short= COM1/3 generate IRQ4

Open = No interrupt generated

JP6 Serial port B address select jumper
*1-2 = Port B is COM2
2-3 = Port B is COM4

JP7 Serial Port B interrupt enable jumper
*Short = COM2/4 generate IRQ3

Open = No interrupt generated

J13,J14 COM1/3 and COM2/4 connectors
NOTE: Cable straight from 2x5 header to DB9 connector

NOTE: Pin 1 is LEFT-BOTTOM and goes to pin 1 of DB9

1= DCD(l) 2= DSR(l)

3= RxD() 4= RTS(0)

5= TxD(0) 6= CTS(l)

7= DTR(O) 8= RI()

9= GND 10= GND (not used on DB9 connector)

Jumpers and connectors

2-5

4860 MotherBoard Revision C changes:

JP18 64-bit slot write select
1-2 CPUWR#

*2-3 BCPUWR#

JP16 Reserved
Must be left open

JP17 Reserved
Must be left open

JP10 No longer needed

2-6

Jumpers and connectors

Adding additional memory

The 4860 EISA MotherBoard requires the RAM to be loaded in
pairs of 36-bit SIMMs. The SIMM modules can be 2MByte,
4MByte or 8MBytes per module. The modules may be mixed
and matched as long as they are paired.

We recommend using 70nsec SIMM modules for the 4860-
33MHz MotherBoard. Some (but not all) qualified modules are:

2 MByte:

Toshiba THM365120S-70
Micron MT8C36512DM-7
Samsung KMM536512A-7

4 Mbyte:

Toshiba THM361020S-70
OKI MSC2355-70YS12
NEC MC421000A36BH70
8 MByte:

Toshiba THM362020S-70
OKI MSC2356-70YS18
NEC MC422000A36BH70

In the default BIOS configuration, RAM is populated in sockets
U20 and U24. RAM grows upwards from this point using sock-
ets U21 and U25, then U22 and U286, and finally U23 and U27.
A sample configuration might be:

Adding additional memory 3-1

u20, U24 512K x 36 (2MB SIMM’s) 4MBytes

U21, U2s 1M x 36 (4MB SIMM's) 8MBytes
U22, U26 512K x 36 (2MB SIMM's) 4MBytes
U23, U27 2M x 36 (8MB SIMM’s) 16MBytes

This configuration contains 32 Megabytes of memory. Any (or
all) of this memory can be allocated to either the 486 or 860 by
running a simple re-mapping program (see Chapter 1 for instruc-
tions on running CFG4860).

The following chart shows some sample memory configura-
tions. Three configurations are shown; 4MB, 16MB and 32MB:

ket 4MB 16MBytes 32 MBytes
u20 2MB SIMM 4MB SIMM 2MB SIMM
U21 4MB SIMM 4MB SIMM
u22 2MB SIMM
u23 8MB SIMM
u24 2MB SIMM 4MB SIMM 2MB SIMM
ua2s 4MB SIMM 4MB SIMM
U2e 2MB SIMM
u27 8MB SIMM

3-2 Adding additional memory

4860 EISA MotherBoard

Diagrams

4860 MotherBoard Block Diagram

i486
processor

32/64/32 bit
conversion

8bit, 16 bit and 32 bit EISA
1/0 bus

—

EISA Controi

Frame bufter

i860 RISC
processor

Memory
System

4 MBytes to
64 MBytes

Serial, Paralle! and mouse ports

4860 EISA Diagrams

4-1

4860 EISA MotherBoard layout

e

)

=
|

w1y P

T T T L T S

ST e
L) !

|

iy

|

flf‘l(_yl_ e e e

rall 000000

)
.

ﬂ

i 2

L

A

T

! R

- A!l;f

T S—

S

——m

T
b
)

{]L

' EJ

I I—

0 o -
{ } Yoo
o =
.,

.:50
“D-
i
0]
=

BTy

[— — sU ”; " K.EL.E {dﬁ H U]
= IR ik
DUS [{ Ews:@'r:zba - e
r;,g;ﬁ i[}, F‘E (i Vlj;lﬂuDUUnFuiﬂ
,,;»:.'—.'-.7_: . _;“' : ' : .
i ama AT
a;:‘ [. i :‘.":* T T T T T) i n;D
iy lf] D J F.:’:-: ,{ - ‘;-JD(‘% &) .D .
g FE b g g B0 P J YL e r,_j
1{ J 5’(_,5U5,ﬂ%=sﬁ--.1-;ﬁj "‘ ,
U] Gl T GO

| SN 1

.

4-2

4860 EISA Diagrams

486 /860 Processor orientations, SIMM connectors

Jee PS8 PS9

T oo T CPSD L (PS2y

FFFFF¥FFYF FFIFF FTIEFFFTF FFFFFFFF

FFFF
O T

J
]

s R R R s

o]¢*++++++++++++++++ P R R R R R R

+++++¢+¢+¢4+++¢¢ﬂJ23#+#++++++++++++¢+

o]++¢¢+++++¢+++++++* P R R R R X

++++¢¢+¢++4++¢¢+ﬂJ24+++4+++¢+¢¢++++¢+

e e J13 Doooeoocoloso oo
o
ng Y KEY
s e v
Ji4p. 0 0O
ceas
s, SIS PSI0[L RS2 _
+ Tre s e ser e
SN
+ KEY
Pl feriiitiiiiillus
353 J23
: :*0 I+++++++#+#++++#+++ R R R R R X
: *#¢++¢¢¢¢¢++¢¢0+ﬂJ20+++¢++++++¢¢+¢+++
TORFY
4
b
" :* ++trttte e+ e+t 4+ ++t+ttr ettt S
e +¢+++++++++++++++lJ21¢+++++++¢++++++++
e
+
: *4Q 44t btd e bbb bbbt I I T R
L ¢: +¢++¢++++++++#+4ﬂJ22++++¢+++#*+#+++++
Fetd
+
+
+
+
+
+
+
+

2 4+ bbb+ 44+

o]+¢4+++++¢+++¢+¢+++ PR R R R X L
++¢+-¢++#¢¢+++¢¢++U25+++++++¢++++++¢++

+.

o |++++++¢¢++*+++++4+ R R R R Ry

ol A bl bl

+++¢¢0+++¢++++#++U26+++++#+++++++++++

o |+++++++++¢+¢++¢+++ P R R R R R

-
+++++++++++4++¢#ﬂJ27++++++++++++++¢+

tH4t trb bttt A AL bt

bttt b bt bt bd bbbt ot b

I xx. FIEE S R R AR + 4+ + + + I I
Ué4 ues 6 *
+Err et + ettt -
Al Al T 61
L6t
T I TEX ey + +
B R R N e R R X X R R R R L -034
P R A R R T LR R R -+ +
+ 4 +44 ++ 4+ -+ + +
++# +++ +++ +++ [+ +
+4+ 4+ +4¢ ¢+¢| |+++
+ + +
+ + + S+
+ + | S | M I VIR
. Ny I . + +
+ + + + 1+
+ + + + +
+++ ¢¢+ +¢+| |++# '*8*
+++ + 4+ + 4+ 4 -+ + +
+++#+++¢¢¢+++++¢+ P R e '*3*
R R R R RS P T R R T RS I+ +
R R s P s I :
U114 U92 U0 |
4+ +

+++ 444

+
+
+
+
+
+
+

+t+t+t+ e+ 4

:

2T eI,
FI 4TI FITFE T

aruic

oUdc

:

ettt t ettt

[TXEEEET LR

%

tr ettt bbb

N

(ST EXXXEEEE

0 NnC

:

++++++44+t+4+ 4

TS TR"

++++4++tt 4+t

++ 4

:

IR R X XXXR X,

A~ C

o C

-+t + e

+

ERIEIE R R

nc

;

+++4t 444

++++t+ ettt

+4++ 44

—
+r4 4

#1
+

N C

[+ e+ + 4

EXEXEXEX]

o

0+#+#++¢#§ ++ 4+t 4

+ 444

CR IR R AR R R

%

(EEXLZEXXIXEXER.

O —=C

I FIFTs++4+ ¢

4+ e+t 4+ 4

4+#+400+++#§ IEEXE X XXX R XX

wo—C

1
3
=
A

Of teeesy

4860 EIS

Mouse connector

|
f:)dfa)
by i3 ODC\
JSITQ€7 Lo ¢
9
T

GROUND

Mouse Connectfor
(As seen from back
of computer)

a4-4 4860 EISA Diagrams

Jumper locations

JP]‘4: BUES Dhﬁsor O[T T
E + 3 : 4 .‘: : :S: ;E_;:

JP3: Mouse Interupt
E = Disable = Enable

......................

PV AN

JP12: Leave OPEN

JP11: Mouse/Keyboard BIOS Configuration

(Revision A Artwork)
JP1] JP1

Na 1.6 Keyboard EISA 001
BIOS = Keyboard BI0S

AAOLMAAMMAAMMAADAMAGDD Aba

VO C

JP11: Mouse/Keyboard 8105 Configuration f
(Revision B Artwork) :
JPl1 JP1L
5] No Mouse + Mouse + AT
o o] XT/AT Keyboard Keyboard
(1.6 Keyboard) [co] (4.0 Keyboard)
3
J9: RESET
JP8: Paralle] Port Select ock
JP4 JP6 LPT1: (Ox03BCH) J20: Keyloc
’ .
JP4: Serial Port A 5""" 12 e s s J17: Leave OPEN
=Xl COMI/ 1 : e 85§ JP57.9: 1/0 Port Interrupts

e COM3

SW1: Monitor Select ﬂ = ENABLED E = DISABLED

. g Monochrome
e 5;;;' 28?125 E I t— JP9: Paraliel Port Interrupt
COM4 VGA/EGA JP5: Serial Port A Interrupt

JP7: Serial Port B Interrupt

4860 EISA Diagrams 4-5

EISA Configuration UtiIity_

Trademark Information
Configuration Utility User's Guide Version 1.10. Micro Com-
puter Systems, Inc., Hauppauge Computer Works, Inc.

NOTICE: The information in this guide is subject to change
without notice.

NEITHER MICRO COMPUTER SYSTEMS, INC. OR HAUP-
PAUGE COMPUTER WORKS, INC. SHALL NOT BE LIABLE
FOR TECHNICAL OR EDITORIAL OMISSIONS MADE HEREIN;
NOR FOR INCIDENTAL OR CONSEQUENTIAL DAMAGES
RESULTING FROM THE FURNISHING, PERFORMANCE, OR
USE OF THIS MATERIAL.

This guide contains information protected by copyright. No
part of this guide may be photocopied or reproduced in any
form without prior written consent from Micro Computer Sys-
tems, Inc.

Copyright 1989, 1990 Micro Computer Systems, Inc. All Rights
Reserved.

Copyright 1990 Hauppauge Computer Works, Inc. All Rights
Reserved

The software described in this guide is furnished under a
license agreement and may be used or copied only in accord-
ance with the terms of the agreement.

MS-DOS is a registered trademark of Microsoft Corporation

introduction to the EISA Configuration Utility
The Extended Industry Standard Architecture Configuration
Utility is a software utility for the configuration of EISA com-

EISA Configuration Utility 5-1

puters. Delivered with all EISA machines, the EISA Configura-
tion Utility automatically generates conflict-free configuration in-
formation for the system, and provides information to the user
for the correct setting of switches and jumpers on older-design
ISA cards.

The Problem

In the ISA architecture, one of the biggest challenges faced by
a user is configuring the computer. The computer must be con-
figured when it is initially set up and any time hardware is

added to or removed from the system. This often requires read-
ing several manuals to find the information needed to correctly
set switches and jumpers as well as learning new concepts
such as I/O addresses and interrupt levels. Once the user has
configured the computer, the only way to know if it is con-
figured correctly is to plug all the boards in and see if every-
thing works. If not, there is usually little to assist the user in
resolving the problem.

The Solution

In the new EISA architecture, option boards are designed
without switches or jumpers. Configuration is achieved through
a series of initialization commands that are stored in nonvolatile
memory. The EISA Configuration Utility determines the con-
figuration, creates the initialization commands, and ensures that
the configuration is correct. If a conflict free configuration is not
possible, the user is notified immediately.

At system power-up time, the EISA system ROM downloads sys-
tem initialization information from nonvolatiie memory to the slot-
specific 1/O addresses for each EISA board to declare system
resource use and other manufacturer-defined options. For EISA
boards, this port initialization process is automated, and it
replaces the switch and jumper setting method used for ISA
boards.

One advantage of EISA is the ability to accept existing ISA
boards. The expansion bus of an EISA computer is defined to
be a superset of the Industry Standard Architecture and main-

5-2

EISA Configuration Utility

tains full upward compatibility for option boards originally
designed for 8 and 16 bit ISA computers. Boards designed for
the ISA architechture containing switches and jumpers can
coexist with software programmable boards in an EISA system.
In addition to generating initialization information for EJSA
boards, the EISA Configuration Utility is able to determine the
switch settings for any ISA board in a system if a corresponding
ISA CFG file is supplied.

Configuration (CFG) and Extension (OVL) Files

Each option board in an EISA system has a corresponding con-
figuration file (CFG) that describes the characteristics and the re-
quired system resources of that board. The EISA Configuration
Utility uses the information from the CFG files to create a con-
flict-free configuration.

Despite the extensive flexibility of the format of the CFG file,
there may be times when the Configuration Utility can not sup-
port all possible configuration options. Therefore, executable
code in the form of an OVL file can be integrated into the Con-
figuration Utility’s processing. This allows further customization
of the configuration process for any unusual board specific
needs, such as determining system equipment, fixed disks,
coprocessors, floppy drives, system passwords, and other spe-
cial devices.

System Contiguration Information Files (SCI)

The EISA Configuration Utility has the ability to create configura-
tion information files which can later be used on another com-
puter. These files are named with the SCI extension. In addi-
tion, the SYSTEM.SCI file is maintained by the Configuration
Utility as a backup for the computer’s EISA nonvolatile memory.

When the Configuration Utility is first executed, it determines if
the nonvolatile memory information is valid. If the nonvolatile
memory information is invalid, the configuration may be res-
tored by loading an SCI file from the configuration disk or by
manually selecting CFG files and assigning them to slots.

EISA Configuration Utility 5-3

Starting the utility

This utility runs on any ISA or EISA computer using MS-DOS
version 3.2 or later. A minimum of 640 Kbytes of memory and a
1.2 megabyte diskette drive are required. A mouse is also
recommended to move the cursor and to select options within
the utility.

To start the utility, insert the System Configuration diskette in
drive A. Then, turn on your computer. If your computer is al-
ready on, hold down [Ctrl] and [Alt], and press [Del] at the
same time. A logo screen will be displayed. Press any key to
display a welcome screen. Press [Enter] to leave the welcome
screen and display the main menu. Refer to Chapter 2, "Com-
mand Reference," for instructions on using the menu and a
description of the menu selections.

Command Reference

Using the main menu
There are two ways to choose a menu selection from the main
menu: using the keyboard and using a mouse. To choose a
menu selection using the keyboard, use the up and down arrow
keys to position the cursor on the desired menu selection and
press [Enter].

To choose a menu selection using a mouse, position the mouse
cursor over the desired selection on the menu and click the left
button on the mouse.

Using the submenus
Five pull-down menus can be used when you choose the Con-
figure Computer - Advanced Method selection (for menu op-
tions see MAIN MENU SELECTIONS section in this guide).
These menus are listed in the menu bar at the top of the
screen. There are three ways to use the pull-down menus:

Using the keyboard
To make menu selections using the keyboard, follow these

5-4 EISA Configuration Utility

steps:
1. Press the [F10] key to place the cursor on the menu bar.

2. Use the [left arrow] and [right arrow] keys to position the cur-
sor on the desired pull-down menu name.

3. Press the [Enter] key to display the pull-down menu.

4. Use the [up arrow] and [down arrow] keys to position the cur-
sor on the desired pull-down menu item.

5. Press the [Enter] key to execute the pull-down menu item. If
the menu item ends in an ellipsis (...), a dialogue box will be dis-
played to prompt you for further information; otherwise, the
menu item will be executed directly.

Using enhanced letters

Each pull-down menu listed on the menu bar and each item on
the pull-down menus have a single enhanced letter. To make a
selection using enhanced letters, follow these steps:

1. Press and hold down the [Alt] key while pressing the en-
hanced letter for the desired pull-down menu. The puli-down
menu is displayed.

2. Press the enhanced letter that corresponds to the desired
menu item to execute the menu item. If the menu item ends in
an ellipsis (...), a dialogue box will be displayed to prompt you
for further information; otherwise, the menu item will be ex-
ecuted directly.

Using a mouse
To make menu selections using a mouse, follow these steps:

1. Place the mouse cursor over the desired pull-down menu
name on the menu bar and click the left button on the mouse.
The puli-down menu is displayed.

EISA Configuration Utility 5-5

2. Place the mouse cursor over the desired pull-down menu
item and click the left button on the mouse to execute the menu
item. If the menu item ends in an ellipsis (...), a dialogue box
will be displayed to prompt you for further information; other-
wise, the menu item will be executed directly.

Using dialogue boxes

When you select a menu item that ends in an ellipsis (...), a
dialogue box will be displayed to prompt you for further informa-
tion. There are two ways to use a dialogue box:

Using dialogue boxes from the keyboard

To move within a dialogue box using the keyboard, follow these
guidelines:

1. Press [Tab] to move to the next field or area.

2, Press [Shift + Tab] to move to the previous field or area.
3. Use the arrow keys to move between items in a list.

4, Press the space bar to turn a check box on or off.

5. Press the [Enter] key to select.

6. Press [Esc] to cancel the dialogue box.

Using dialogue boxes with a mouse
To move within a dialogue box with a mouse, follow these steps:

1. Place the mouse cursor over the desired choice in the
dialogue box and click the left button.

2. Place the mouse cursor on a check box and click the left
button to turn the check box on and off.

3. Place the mouse cursor on a button and click the left
mouse button.

5-6

EISA Configuration Utility

Using screens
When your configuration is displayed in an overview or a
detailed view, use the following methods to move the cursor:

Using the keyboard

To move the cursor on the screen using the keyboard, follow
these guidelines:

1. Press [Tab] to move to the next option.

2. Press [Shift+ Tab] to move to the previous option.

3. Press [Ctrd + Home] to move to the beginning of the infor-
mation.

4. Press [Page Down] to move down one screen.

5. Press the [down arrow] key to move down one line.
6. Press [Page Up] to move up one screen.

7. Preés the [up arrow] key to move up one line.

8. Press [Ctrd + End] to move to the end of the information.

Using a mouse
To move the cursor on the screen using a mouse, follow these
guidelines:

1. Place the mouse cursor over the desired area on the
screen and click the left button.

2. If a scroll bar is displayed on the right side of the screen,
place the mouse cursor over the arrow symbol at the top or bot-
tom of the scroll bar and press the left button.

Getting help
An information line is displayed on the last line of your screen.
This line contains a list of the keys you can use.

EISA Configuration Utility 5-7

You can get help about a selection on a menu or any object on
a screen by pressing the [F1] key while your cursor is on the
selection or object. You can also display help from the help
topics index by selecting Help topics from the Help pull-down
menu or by pressing [Shift + F1].

For a compilete list of key combinations, press [Shift + F1] to dis-
play the help topics index. Then use the arrow keys to select
"Using the keyboard" and press [Enter].

Main Menu Selections

Learn about configuring your computer
This selection will display an overview of how to use this utility
to configure your computer.

Configure computer
When you choose this selection, a menu is displayed with the
following selections:

Copy configuration (CFG) files
Configure computer - basic method
Configure computer - advanced method

Return to the main menu

Copy configuration (CFG) files
This selection copies configuration (CFG) files from an OPTION
CONFIGURATION diskette or the Configuration File Library to
your System Configuration diskette. You need to copy a CFG
file for each board or option you plan to install BEFORE you
configure your computer.

Configure computer - basic method
This selection will guide you through the procedure for adding
boards and options to your computer. When you choose this

5-8 EISA Configuration Utility

selection, a graphical overview of the boards and options in-
stalled in your computer is displayed on the screen. When
there are no resource conflicts, the configuration information is
saved in a system configuration information (SCI) file. If you
need to change functions, edit resources or perform advanced
tasks, use the advanced method.

Before you return to the main menu, a list of the switch, jumper,
and software settings which you need to change for ISA boards
can be displayed. Either write them down or print them if you
have a parallel printer attached to your computer. If you do not
have a CFG file for an option or board you want to install, use
the instructions provided with the option to install it.

Configure computer - advanced method
When you choose this selection, a graphical overview of the
boards and options installed in your computer is displayed on
the screen. A menu bar is displayed at the top of the screen,
which you use to access pull-down menus.

This selection allows you to enter configuration information
about your computer through the use of pull-down menus (see
MENU BAR SELECTIONS for pull down menu option functions).
As you enter information, the entries are verified (when Auto
Verify is on (default)). If any resource conflicts are found, you
are allowed to correct the errors by changing function and
resource choices. When there are no resource conflicts,

the configuration information is saved in a system configuration
information (SCI) file.

Menu Bar Selections
Menu Bar

SelectionPull-Down Menu
SelectionFunction

SystemNew Creates a new configuration and system configura-
tion information (SCI) file for a computer (available in non-target

EISA Configuration Utility 5-9

modeling mode only).

Open Opens an existing system configuration information(SCl)
file for editing.

Save As Makes a backup copy of the current configuration
choices in a specified system configuration (SCl) file.

Print Prints configuration information about the current option
or the entire configuration on a printer.

Verify Verifies that the computer is correctly configured (the
configuration is free of system resource conflicts.)

Exit Prompts to either view the settings of the boards and op-
tions, save the configuration and exit, or exit without saving any
changes. If the configuration has changed and is saved, the
computer will reboot instead of exiting to the menu.

EditAdd Adds a selected board or option to the current con-
figuration.

Move Selects the current board and moves it to a selected avail-
able slot.

Remove Selects the current board and removes it from the cur-
rent configuration.

Change Function Selects the current function and allows you
to change the function choice. Only available when the detailed
view is active.

Change Resource Selects the current function and allows you
to change the system resources for the function. Only available
when the detailed view is active.

Revert to Saved Sets all choices for the current board or the
entire configuration to the last saved choices.

Reset to Defaults Sets all choices for the current board or the

5-10

EISA Configuration Utility

entire configuration to the manufacturer’'s default choices.

Lock Secures all choices for the current board or the entire con-
figuration to the current selections.

Unlock Unlocks all choices for the current board or the entire
configuration.

ViewOverview When selected, displays a general overview of
the configuration.

Detailed by Slot When selected, displays a detailed view of the
configuration sorted by slot.

Detailed by Type When selected, displays a detailed view of
the configuration sorted by type of function.

Switch and Jumper Settings Selects the current board or op-
tion and displays information about its switches and jumpers.

Software Parameters Selects the current board or option and
displays information about software drivers.

Connections Selects the current board or option and displays
information about its external cable connections.

Board Specifications Selects the current board or option and
displays information about identification and physical charac-
teristics.

Resources Selects the current board or function and displays
system resource summary information.

SettingsAuto Verify When selected, your computer’s configura-
tion is checked for resource conflicts each time you changethe
configuration. Selecting Auto Verify turns Manual Verify off.

Manual Verify When selected, your computer's configuration is
not checked for resource conflicts. You must select Verify from
the System pull-down menu to check your computer’s configura-

EISA Configuration Utility 5-11

tion. Selecting Manual Verify turns Auto Verify off.

HelpHelp Topics Displays an index of help topics which can be
displayed on your screen.

Help Displays help information about the currently selected
board, option, or function. This menu item performs the same
function as pressing the [F1] key.

How to Use Keys Displays a list of the key sequences which
can be used.

How to Use Help Displays information about using help.

Copyright Information Displays copyright information about
this utility.

Before you return to the main menu, a list of the switch, jumper,
and software settings, which you need to change for ISA
boards, can be displayed. Either write them down or print them
if you have a parallel printer attached to your computer. If you
do not have a CFG file for an option or board you want to in-
stall, use the instructions provided with the option to install it.

Return to main menu

This selection will return you to the main menu.

Set date and time

This selection allows you to set your computer's date and time.
Once you set the date and time, your computer will keep track
of it, even if the power is turned off.

Exit from this utility

This selection exits the utility. The system will reboot. If you do
not have an operating system installed on your fixed disk,
replace the System Configuration diskette in the diskette drive
with your operating system diskette.

5-12

EISA Configuration Utility

Starting the Configuration Utility from a fixed disk
it is recommended that you start this utility from the System
Configuration diskette. However, if you have MS-DOS instalied
on your fixed disk, you can start the utility from your fixed disk.
Starting the utility from your fixed disk allows you to customize
the utility through the use of command line parameters.

Installing the Utility on a Fixed Disk
Before you can start the utility from your fixed disk, you must
copy the utility files to your fixed disk. To copy the files, insert
the System Configuration diskette in drive A and enter:

COPY A:*.* [d:][path]
where:
d: is the fixed drive that will contain the utility files

path s the path on the fixed drive that will contain the utility
files

Starting the Utility
To run the utility, type the following command followed by
[Enter]. Note that items in brackets are optional and only the in-
formation within the brackets is entered.

[d:][path]SD [/A] [/B] [/H] [/K] [/M]

where:

d: is the drive which contains the utility files

path is the path to the utility files

/A Expanded mode. Provides an expanded set of menus
with additional functionality. This mode may also be activated

by pressing CTRL-A instead of [Enter] when the "Welcome"
screen is displayed.

EISA Configuration Utility 5-13

/B BIOS video mode. This parameter causes all screens to
be displayed using BIOS Int 10h calls. This parameter should
be used on computers with non-standard displays. The defauit
mode is to write directly to video memory.

/A High resolution display. If you have an EGA monitor, the
utility will be displayed in 43-line mode. If you have a VGA
monitor, the utility will be displayed in 50-line mode. When this
parameter is not used, 25 lines will be displayed on your
screen.

/K Keyboard only mode. If this parameter is used, the com-
puter will not support the use of a mouse device even if one is
present. The default is to support a mouse if its driver is
loaded.

M Monochrome display mode. Color not used.

When the utility begins, a logo screen will be displayed. Press
any key to display a “Welcome" screen. Press[Enter] to leave
the "Welcome" screen and display the main menu. Refer to
“"Command Reference," for instructions on using the menu and
a description of the menu selections.

Starting Configure Computer selection from a fixed disk

You can bypass the main menu and start the Configure Com-
puter selection directly from MS-DOS. This allows you to use
command line parameters to customize the operation of the
utility. You must have MS-DOS and this utility installed on your
fixed disk.

Use the following format to type the command that starts this

selection from MS-DOS. Note that items in brackets are option-
al and only the information within the brackets is entered.

[d:][path]CF [/B] [/E] [/F} [/H] [/K] [/M] [/N] [/T]

where: .
d: is the drive which contains the utility files

5-14

EISA Configuration Utility

path is the path to the utility files

/B BIOS video mode. This parameter causes all screens to
be displayed using BIOS Int 10h calls. This parameter should
be used on computers with non-standard displays. The default
mode is to write directly to video memory.

/E Easy configuration operation. Starts the utility in Basic
Method.

/F Fast configuration operation. This is the automatic con-
figuration mode. The utility will determine the boards and op-
tions and configure the system without user assistance.

H High resolution display. If you have an EGA monitor, the
utility will be displayed in 43-line mode. If you have a

VGA monitor, the utility will be displayed in 50-line mode. When
this parameter is not used, 25 lines will be displayed on your
screen.

M Monochrome display.

/K Keyboard only mode. If this parameter is used, the com-
puter will not support the use of a mouse device even if one is
present. The default is to support a mouse if its driver is loaded
in memory.

/N Non-target modeling mode. This parameter runs the
utility in non-target modeling mode. When you run this utility,
the configuration which is stored in the system configuration in-
formation (SCI) file named SYSTEM.SCI is displayed. When the
configuration is saved, it is normally saved to the SYSTEM.SCI
file. However, with non-target modeling mode, you can create
an SCl file for a computer other than the one on which you are
running the utility, create multiple SCI files, and create one SCI
file for multiple computers.

m Detailed view by slot. This parameter causes the default
view to be detailed by slot instead of overview.

EISA Configuration Utility 5-15

i860/APX Attached
Processor Executiv

Overview
860/APX is the operating system to support i860 based applica-
tions. It requires a host operating system such as UNIX or DOS
to run on the 486 processor while the 860/APX Executive runs
at the same time on the i860 processor.

i8B60/APX lets the 486 host operating system perform all system
I/O, including reading and writing disk files and displaying data
on the video screen. The i860 RISC processor is free to run its
programs without having to be concerned with the details of the
host operating system. This means that programs developed
for the i860 on one operating system (DOS for example) can be
run on any of the other APX supported operating systems (SCO
UNIX for example), without modification or recompiling! This
is called "binary portability".

Once i860/APX is loaded and is running on the i860 processor,
standard C and Fortran programs can be compiled with i860
compilers and executed using i860 tools. A reference to some
of the available i860 tools is at the end of this chapter.

System support requirements to load i860/APX are:

« Hauppauge 4860 MotherBoard with both 486 and 860
processors and 4MBytes minimum for the 486 and 4MBytes
minimum for the 860.

o For i860/APX-UNIX: ATT UNIX V version 3.2.2, ATT UNIX V
version 4.0, Interactive UNIX V version 3.2.2 or SCO Open
Desktop ver. 3.2.2 installed on the hard disk

« For i860/APX-DOS: DOS 3.3, 4.01 or 5.0 installed on a hard
disk

« 1.2 MByte floppy

860/APX 6-1

See Chapter 1 for configuring the memory system for use with
i860/APX. Please read the sections titled Installing i860/APX
with the EISA BIOS and Setting the memory size of APX.

Installing i860/APX-DOS

To install the i860/APX-DOS software from your Hauppauge
APX diskette, insert your APX floppy in drive A; and type:

mkdir c:\apx5
xcopy a: c:\apx5*.* /s

iB60/APX-DOS is loaded in two parts: a DOS driver which is
loaded by CONFIG.SYS, and the i860/APX Executive which can
be loaded from the command prompt (c:\).

The DOS driver is called N860.SYS. This driver uses the
protected mode of the 486 processor, and so it should be
loaded before other protected mode drivers are loaded. Modify
your CONFIG.SYS file by adding:

device = ¢:\apx5\N860.SYS

The APX system configuration is in the KER860 subdirectory in
a file called kernel.cfg The two parameters that should be
modified are ev_memory_size (the amount of 860 memory that
is configured) and host_memory_size (the amount of 486
memory that is configured). Once again, see Chapter 1 for con-
figuring the memory system for use with i860/APX. Please read
the sections titled Installing i860/APX with the EISA BIOS and
Setting the memory size of APX.

The i860/APX Executive is loaded by moving to the c:\apx direc-
tory, and then typing:

boot860

This needs to be done twice due to a bug in i860/APX. After
the i860/APX driver is loaded, check to see if APX is functional

6-2

860/APX

by typing:
adm860 -s

The correct status should include the number of hours, minutes
and seconds that APX has been loaded. To run a simple test
program, type:

run860 hilbert

This demo program does a matrix multiply, and takes about 5
seconds to run. The speed of this complex math program is
equivalent to running on the original CRAY 1 supercomputer!

Please note: the i860 program debugger, normally part of in
the run860 command, is currently not functional under
i860/APX-DOS.

A seperate directory, called \usr\pgi, has been setup for the
Portland Group i860 compilers. The i860/APX-DOS diskette
does not come with these compilers, but the directory is set up
with the correct script files to run the Portland Group compilers
should you have them. Also, to support the i860 compilers the
i860/APX-DOS distribution diskette comes with TMP directories.
These can be removed if you are not planning to use the i860
compilers.

Installing 860/APX under UNIX V
Once UNIX V has been loaded on the hard disk and can be
booted, 860/APX can be loaded from a floppy disk.

After booting the UNIX operating system on the 486 processor,
the user must log in as root. Make sure the current directory is
the root directory and that the 860/APX load floppy is in the
1.2MByte floppy disk drive.

If the primary floppy disk drive is a 1.2MByte floppy disk drive,
the following commands will load i860/APX onto the hard disk:

860/APX 6-3

mkdir /apx5

mount -r /dev/dsk/f05ht /apx5
[apx5/installapx

shutdown -g0

The shutdown command will allow the re-booting of UNIX so
that the 860/APX driver will be loaded. When the system is-
sues the command "Reboot the system now", reboot by hitting
CTRL-ALT-DEL. The loading process takes about 15 minutes.

Note: If drive B: is the 1.2MByte floppy, then substititute the fol-
lowing command in the second step:

mount -r /dev/dskf15ht /apx5

After the installation is complete, all 860/APX programs, utilities
and demo programs are put into a directory called:

/usr/apx5
There are several subdirectories that hold binary files, demo
programs and programs needed during the APX installation
process.
At this point UNIX will be rebooted and the 860/APX drivers will
be loaded. The following message shows that the 860/APX
driver has been loaded into the UNIX operating system:

i860 Driver Release 1.0 found
After logging in as root, the PATH should be set to the
/usr/apx5/bin directory by either adding /usr/apx5/bin to your
current path, editing the .profile file or by typing:

PATH =PATHS$:/usr/apx5/bin

You can now load 860/APX onto the i860 processor by execut-

6-4

860/APX

ing the following commands:
boot860&

boot860&

e Note: boot860 needs tobe run twice on
initial powerup. This is due to a bug in
860/APX, which will be fixed in the next
release of 860/APX.

e Note: the ampersand (&) at the end of
boot860 allows UNIX to continue even if
the boot860 command fails. If there is a
hardware problem, you are still in UNIX
and can gracefully shut down UNIX
without having to push the reset button.

This loads the Attached Processor Executive on the 4860, and
prepares for the execution of i860 programs. If 860/APX does
not load at this point, it means the i860 processor is not
functioning properly. The reasons for this might be:

» 1860 processor was not installed in the Hauppauge 860
MotherBoard, or was not plugged in all the way.

« The SIMM modules for the i860 were not plugged in, or are
not functioning properly.

After the 860/APX has been loaded onto the i860, you can
check the status of APX by typing:

admB860 -s&
To run an i860 program type:

run860 »xx
where x is the name of a program that has been compiled
with an i860 compiler. A demo program called hilbert has been

included and can be run by the following command:

run860 /usr/apx5/tests/hilbert

860/APX 6-5

To debug this program, the following command can be used.
Please refer to the chapter called "i860 Assembler, Linker and
Debugger" for a list of debugger commands:

run860 -d /usr/apx5/tests/hilbert
To see the source code of this program type:

cat /usr/apx5/tests/hilbert.c
There are other programs which have been compiled to run on
the i860 processor using a i860C compiler from Metaware.
These include hilbert, hil11 and mandel (which requires a VGA
adaptor). All of these programs can be found in the directory:

/usr/apx5/tests

Programs included with i860/APX

boot860: loads the 860/APX Executive into the i860's memory
space and then has the i860 Exective run its startup code.

Once boot860 has been run, other programs can be ioaded into
RAM by invoking run860 for execution by the i8560 processor.

adm860: the i860 System Administrator. Shows the status of
programs running on the i860, and allows these programs to be
shut down.

To see the i860 program status type:
adms860 -s&

Other options can be found by typing adm860, which will show
all options.

rung60: loads an i860 program from the disk into the i860’s
memory space and starts the 1860 processor executing it. |f
the run860 command is followed by -d, a debug session is
started. If the command line is appended with an ampersand
(&), 860 status can be checked by running adm860:

66

860/APX

run8s0 »xxx&
adm860 -s&

reset: resets the i860. This program is useful if the i860
program crashes and it is necessary to reset the i860 without
reseting the 1486 processor.

i860 development tools

Compilers
Metaware: High C i860

o tele: 408-429-6382 fax: 408-429-9273
Green Hills: C-i860, C+ +, Fortran

« tele: 805-965-6044 fax: 805-965-6343
Portland Group: C, Fortran Compiler

o tele: 503-682-2806 fax: 503-682-2637

Other i860 tools
Hauppauge Computer Works, Inc.: i860ASM, i860Linker

Portland Group: Debugger; GUI for X-windows

Profiler/Monitor

Discount coupons for compilers
On the next page are coupons good for discounts on compilers
for the i860. They are provided by the vendors of the com-
pilers, and should be redeemed directly with them.

860/APX 6-7

t coupon

iIscoun

Portland Group d

0,0.6 uoBaio ‘sljjaucspm 'H 9NS ‘1n0) Jesuolq MS 0516

1661 ‘OF Yosely sandxs 190 — dizTs Ano

“Ajdde jou op suoyowoid pue SUNISIp Qoum ey idag
J8UI0 Iy "SO 2°€ A XINN Yim SSaJppyY

‘preoq 09gy sbneddney sad (ie 3 'p| uojjezjuebip
'SB yum 9 Jo ueipo4 Jayye) eseyaind
loo} poddns pue sepdwod oggs dwenN

816uis e 1o} pooB s ajeoyRIeD SYL

jsqunpN
lejsag 098y sbneddney

19||dwod 09gf dnoso pueplod e jo 9oud ayj uo
Junoasip 000°L$ O} Jsleaq ayp sappus eI} 18D SiyL

000°L$. 000°L$

+ dLVOIdILH3D «

Sjuawuoljaug Juawdodaag pasueapy pue s19)dwoniadng

dnoio puejioqd eyl

860/APX

6-8

Using VGA display
adapters from the i860

The Hauppauge i860VGA Library provides the i860 programmer
direct access to VGA graphics capabilities from C programs writ-
ten under Hauppauge's release of i860/APX-UNIX for the Intel
i860 RISC processor. Access to the routines is via the standard
C calling sequence and link-editting process. First, a call to the
initialization routine, vga_init(), is made. Next, calls are made

to other VGA library routines to perform the desired functions.
Finally, a VGA cleanup routine, vga_term(), is called.

Housekeeping: Initialization and Termination
The VGA routines must be initialized before use. This is ac-
complished by calling the vga_init() routine and checking the
int return value. If vga_init() returns a non-zero value, and
error occurred while initializing the VGA. It is the user’s respon-
sibility to determine the reason for failure. Additional calls to
other VGA library routines should not be made if vga_init() fails.

The vga_init() routine does basic VGA hardware initialization, in
addition to setting up certain global values for programming
use. VGA graphics mode HEX 13 (0x13) is selected, a default
color map is loaded, the screen is cleared, and the VGA display
RAM is mapped into the user's address space. VGA mode
0x13 gives the user a 320x200 pixel screen, with the 256 colors.
This occupies 64000 bytes of video RAM (320 * 200 * 8 =
64000). Direct access to this video RAM is available; more on
that later.

When VGA library functions are no longer needed in a program,
a call to vga_term() must be made. The vga_term() routine es-
sentially undoes the operations performed by vga_init(). That
is, it returns the display to the default CGA mode 0x03 and
removes the mapping of the VGA RAM from the user’s address

Using the i860 with VGA display adapters 7-1

space. Failure to call vga_term() before exitting from a
program will leave the display in VGA graphics mode 0x13; you
will not be able to get back to a Unix or DOS prompt.

A sample code fragment that initializes the VGA library might
look like this:
main(}{

int rv;

/* Initialize the VGA library */

if(('v = vga_init()) != 0){
printf("Could not initialize VGA -- error %d\n", rv);
exit(1);

}

/* Insert other VGA calls here */

/* Terminate (and reset) the VGA library */

vga_term();

exit(0);

}

VGA Library Functions

Here is a list of all currently implemented VGA library routines,
along with a brief description of what each one does:

vga_init() Initializes the VGA routines. Returns zero on success.

vga_term() Terminates use of the VGA routines, and restores
display to CGA mode 0x03.

vga_clear_screen() Clear the screen. That is, write zeroes to
all 64000 bytes of VGA display RAM.

vga_color(c) : int ¢ Set the color for future operationsto c. ¢
must have a value between 0 and 255 inclusive.

Using the i860 with VGA display adapters

vga_rop(r) : int r Set the raster operation for future operations
tor. r must have a value between VGA_MINROP and
VGA_MAXROP (see vga.h).

vga_move(x, y): int x, y Set the position for the next drawing
(or text) operation to the absolute screen coordinates (x, y). x
must have a value between 0 and 319 inclusive, and y must
have a value between 0 and 199 inclusive.

vga_line(x, y): int x, y Draw a line (using the current color, as
set by vga_color()) from the current drawing position to (x, y).
x must have a value between 0 and 319 inclusive, and y must
have a value between 0 and 199 inclusive.

vga_rect(xc, yc, x|, yl): int xc, yc, x|, yl Draw a rectangle on
the screen using the current color. The rectangle has its upper-
left corner at (xc, yc). The width of the rectangle is x|, and the
height is yl.

vga_loadfont(fn): char *fn Load X-window style font file fn into
memory, and return an integer value representing the font-ID to
be used for vga_setfont() calls. If there is an error loading the
font file, vga_loadfont() will return a negative value. Valid font-
ID’s are always non-negative integers.

vga_setfont(fid): int fid Set the font for future text operations to
the font specified by fid. fid was a valid font-ID returned by
vga_loadfont().

vga_unloadfont(fid): int fid Disassociate the font specified by
fid, and free the memory the font used. Once a font is un-
loaded, you can not use the font-ID again. You must explicity
reload the font using vga_loadfont(), and use the new font-ID
returned.

vga_string(s, n): char *s; int n Write n characters of the string
pointed to by s at the current position (as set by vga_move() or
vga_line()). The font used is the one specified by the most
recent vga_setfont() call. The characters are written using the
current color and raster-op. The base-line of the characters writ-

Using the i860 with VGA display adapters 7-3

ten is that of the current y position. The x position is updated
to point to the end of the text just written. That is, two succes-
sive calls to vga_string() will cause text to be output next to
each other, NOT on top of each other.

vga_fill_screen(c): int ¢ Fill the screen with color ¢. This is the
same as vga_clear_screen(), except instead of using color 0,
color c is used. If you wish to fill the entire screen with a par-
ticular color, this method is preferred as opposed to vga_rect(0,
0, 320, 200). vga_fill_screen() is an optimally coded assembler
language routine, designed for speed.

Global Variables
There are several constants and global variables available to the
user to make program developement simpler. The first thing a
programmer should do is #include "vga.h" in his program.
vga.h contains constants such as the values of the default
colors, (VGA_BLACK, VGA_GREEN, ...), the raster operations,
(ROP_STORE, ROP_OR, ...), the video RAM address (VRAM)
and video RAM size (VRAMSIZE). Also included in vga.h are
structure templates for color map entries and type declarations
for global variables (pos_t, color_t). There are only a few global
variables available to the programmer. These are listed below:

pos_t _FB_XPOS, _FB_YPOS This is the current (x, y) position.
Be careful if you modify these; side-effects are unpredictable.

color_t _FB_COLOR The current color for text/draw operations.

int _FB_ROP The current raster operation as set by vga_rop().
The defauit raster operation (if you do not explicity set one) is
ROP_STORE.

Direct Access to Video RAM
After VGA initialization programmers may access video RAM
directly by using the address defined by VRAM in vga.h. The
value of VRAM is usually (unsignedchar*)(0xf80a0000). You will
notice that normal VGA RAM starts at 0xa0000. Under APX, all
you have to do is add 0xf8000000 to the VGA RAM addresses

7-4 Using the i860 with VGA display adapters

you usually use. You can use VGA RAM like normal memory to

perform various specialized tasks (like loading bitmap images,
for example). A code fragment that reads a VGA bitmap file
into the VGA RAM might look like this:

#include <stdio.h>

#include "vga.h"
main(){
FILE *fp;
if((fp = fopen(‘vga_image.dat", "r")) = = NULL){
perror("Can’t open vga_image.dat");
exit(1);
}
if(vga_init()){
fprintf(stderr, "Can’t initialize VGA library\n");
exit(2);
}
if(fread(VRAM, 1, 64000, fp) ! = 64000){
fprintf(stderr, "Could not read entire image");
goto out;
}
/* At this point, the entire screen image has been
read into VRAM */
/* Wait for a character from the keyboard */

getc(stdin);
out:
fclose(fp);
vga_term();
exit(0);
}

Using the i860 with VGA display adapters

Using the i860 Assembler,
Linker and Debugger

Running the i860 Assembler

The i860 Assembler is a cross compiler that runs on the host
operating system, generating linkable object code that must be
run through the i860 Linker to create a program that can be ex-
ecuted on the i860 processor. Currently only versions of UNIX
are supported as the host operating system, though the output
from the i860 Linker can be run under DOS (see the paragraph
entitled "Running i860 code under DOS").

The i860 Assembler is invoked by the following command:
asm860 [[[options]..]Jinput_file]
where the brackets [and] show options, but are not used in

the actual command line. The options must be seperated by at
least one space. Some of the options are:

-a Do not automatically import any symbols that are referenced
but are otherwise undefined. Issue an error message for this
case.

-be Handle all data defined in data sections in “big endian" mode
(i.e. with most significant byte as lowest address).

-D sym=val Define sym as a local symbol in the macro proce
sor with value val. The -z option must also be set.

-l inc_file Include (via the macro processor) the file inc_file
before the first statement of the input_file. The -z option must
also be set. To include multiple input files, use several -| state-
ments.

i860 Assembler, Linker and Debugger 8-1

-i386 Put the magic number for the 386 Architecture in the out-
put object module instead of the magic number for the i860.

This is so that i386 tools can be used to process the output

from the i860 Assembler.

-l tile_spec Enable a source listing. If file_spec is included after
the | without any spaces, the source listing is directed to a disk
file with the name file_spec. If no file_spec is named, the output
will go to the standard output device.

-L Preserve text symbols that begin with .L. High level lan-
guages generate labels that begin with .L.

-m Ignore (in the assembly pass) the special directives output
(in the macro pass) by the -y option.

-o output_file Set the name of the output module to output file.
If this option is not set, the i860 Asembler creates an output
name of input_name.o For example, if the input file name is
“hello.860" (containing i860 assembly language), if no ouput_file
is specified, the i860 Assembler will create a file called "hello.o".

-R Suppress all .data directives; all code is assembled in the text
segment, and the data segment is not used.

-X Enable additional checks of the program to find illegal sequen-
ces of instructions.

-y Output in the macro pass special directives that the as-
sembler pass uses for better reporting of the lines in the source
file where errors are detected. The -z option must also be used.

>4 Use the macro processor to scan the input_file before the as-
sembler stage. The -z option must be used for any macro
processing to take place.

Running the i860 Linker
The i860 Linker is used to create a runnable i860 program from
the output of the i860 Assembler. The i860 Linker puts together

8-2 i860 Assembler, Linker and Debugger

modules created by the i860 Assembler (it may only be one
module for a simple i860 program) and resolves inter-module
symbol references to create a i860 program that can be directly
executed.

The i860 Linker is executed by the following command:
id860 [option]...[[-B bss_addr] {[-p]input_file}...]...

The brackets [and] show options but are not used in the ac-
tual command line, and can be any of the following:

-B bss_addr Specify the RAM address to be used for common
blocks for the bss section of all in_file modules that follow. This
sepcification can be repeated to specify different addreses for

different addresses for different groups of modules. The bss_ad-

dress is a hexidecimal integer.

-d integer Specify the address at which the data section is to be
loaded. The default starting address is 0x1000.

-D integer Specify the length of the data section as integer
bytes. The data section is padded with NULs to the specified
length. The integer may not be less than the original length of
the data section.

-e symbol Specify symbol as the entry point of the program.
The default entry point is Is$start.

-f list_file Read list_file for a list of i860 object modules to be
linked. Names in this file can be separated by commas,
spaces, tabs or newlines. Multiple -f statements are allowed.
When the -f statement is used, the -F and -p options may not be
used.

-i386 Use the 386 magix number instead of the i860 magic num-
ber in the output file. This will allow i386 tools to be used on
the i860 Linker output.

-k Start the text and data sections exactly at the addresses

i860 Assembler, Linker and Debugger 8-3

specified by the -T and -d options (or the default starting ad-
dress if -T or -d options are not used) without performing the
normal modifications to those addresses to make the file page-
able.

-M Create a load map. If the -M is followed by a redirection
command (out file), the load map will be put into the out-
put_file. Otherwisw the load map will be sent to the standard
output device.

-Mx Create a load map plus a cross reference.

-0 output_file Put the output module in a file called Output_file.
Otherwise use a file called: a.out

-p Align the data section of the following input module on a
page boundary. This is useful for producing page directories
and tables.

-r Retain relocation entries in output_file. This enables incremen-
tal linking. The output_file can be used as input to another i860
Linker step. When -r is used, the -0 option must also be used.

-s Strip all symbols from the output file.
-t Print the name of each input file as it is processed.

-T integer Specify the address at which the text section is to be
loaded. The integer is the starting address. The default starting
address is 0xF0400000.

-u symbol Initialize the symbol table with symbol. The i860
Linker considers symbol to be undefined; therefore it may be
used to trigger the loading of the first member of an archive
library.

-V Print the names of the input modules and libraries as they are
processed.

8-4

i860 Assembler, Linker and Debugger

Executing an i860 program and using the i860 Debugger
The i860 Debugger, similar in usage to the UNIX adb, will use
the output from the i860 Linker, and allow the following func-
tions:
- Setting of breakpoints in both code and data
- Reference to memory and registers via symbolic names
- Examine and set registers and memory sections
- Dissassemble i860 instructions symbolically

- Display i860 pipeline stages and call frames from the stack

- Single step i860 instructions, allowing "stepping over" proce-
dure calls

- Debug high level language programs from source-code level.
To run the i860 Debugger, use the following command line:

run8eéo [-d][-w][-R][-r[register_type]][- dir][[-S dir{dir}..][-
Fl[command_file]] object_file [parameters]

where:

object _file is the object file created by the i860 Linker, and
should be executable

-d Tells the i860 Debugger to start an interactive debug session,
taking requests from the keyboard. If the -d option is not used,
run8e0 simply executes the program.

-w Creates object file (if necessary), and opens it for reading
and writing so that this file can be modified during the debug
session.

-R Instructs the i860 Debugger to display all processor registers
when a batch session is terminated. This aids in comparing the

i860 Assembler, Linker and Debugger 8-5

results of one debug session to a previous debug session.

-r Displays the values of specified registers when a batch ses-
sion is terminated. Registers are displayed by types: f=floating
point registers (single precision), d = pairs of floating point

registers (double precision), i = pairs of floating point registers
(64-bit integers), p = piplines, s =simulator registers. If no type

is specified, the i860 Debugger displays the integer registers

and control registers.

-1 directory Specifies the directory that contains files to be read
with the commands $ or $ <. The default is the current direc-
tory. No space is permitted between the - and the directory.

-S Provides a list of directories to be used during source debug-
ging when searching for source files. The current directory is al-
ways searched first.

-F command_file Tells the i860 Debugger to execute requests
found in command_file when staring a debug session. This
command assumes interactive debugging (the -d option must

be used). The command_file usually contains commands to set
parameters, to set standard breakpoints, and to initialize

registers. If no command_file is specified after the -F, the i860
Debugger assumes a file named object_file.cmd is used.

i860 Debugger Commands
The i860 Debugger commands may use address or line expres-
sions as part of their command line. A line number cor-
responds to a line from a source program file (either C or
Fortran). Note that to preserve line numbers during the Com-
pile/Assemble/Link steps, specify the -g option during compila-
tion, and do not use the -s option during Linking, otherwise the
lines numbers will be stripped from the final object module used
by the i860 Debugger.

The format of a command line is:

[address_exp][,count_exp] command [modifier] [;] where

8-6 i860 Assembiler, Linker and Debugger

the address_exp can be either a memory address or a line num-
ber (when doing source code level debugging), count_exp is
used to specify the number of times the command is executed,
and the modifier is dependant upon the command. In the fol-
lowing list of commands, the count_exp has not been shown,
but may be used unless otherwise noted. Several debug com-
mands can be used on the same line by separating them be the
semicolon (;).

i860 processor registers
All of the registers within the i860 processor may be viewed with
the $r command, or modified with the command. Please refer
to the i860 Programmers Reference Manual (Intel Corp.) or the
i860 Architecture Reference (McGraw Hill Publishing, author:
Neil Margolis) for a listing of the i860 registers.

The format of a line number is:

#line_number[~ source_file] where source_file, if not specified,
is taken from the directories from the -S option during Debug-
ger invocation.

address_exp:b Set a code breakpoint at address_exp
address_exp:ba Set breakpoint at address_exp after any access
address_exp:brd Set breakpoint at address_exp after read
address_exp:brw Set breakpoint at address_exp after write
address_exp:c Continue program execution at address_exp. Nor
mally used to continue execution after a breakpoint has been
reached. If count_exp is given, skip the next count_exp-1 break-

points.

address_exp:d Delete breakpoint at address_exp. If ad-
dress_exp is not given, delete all breakpoints.

address_exp:r [parms] Run object_file. Other command line

i860 Assembler, Linker and Debugger 8-7

parameters (parms) may be given after the :r command. The
address_exp, if present, gives a starting location. If not present,
execution starts at the standard entry point. If a count_exp is
given, skip the next count_exp-1 breakpoints. All program vari-
ables are reinitialized, but the breakpoints, registers and i860
Debugger variables are not changed.

count_exp:s Single steps count_exp times.

count_exp:S Single steps count_exp times, but skips over pro-
cedure calls.

address_expname Assign the value of address_exp to name.
Name can be an i860 register or a debug register.

address_exp /i [format] Disassmble contents of memory start-
ing at address_exp. This command can only be run after execu-
tion has been started by the :r, 'R, :s, :S or :| commands.

Source code debug statements

address_exp,count ?i [format] Disassemble count lines of
source code from object_file starting at address_exp.

line_number:a Display the instructions generated by the com-
piler at line_number.

line_number:i [parms] Single step count_exp source lines
starting at line_number.

line_number:| [parms] Single step count_exp source lines but
skip over procedure calls.

line_number:w Display the source code starting at statement
line_number. Display count_exp lines.

:n Display the next set of source lines using the count_exp
from the previous :w command.

:p Display the previous set of source lines using the

8-8

i860 Assembler, Linker and Debugger

count_exp from the previous :w command.

Debugger restrictions
For instructions that execute in dual-instruction mode, break-
points can be set only on the core instructions.

A breakpoint cannot be set on a delayed branch instruction.
When delayed branch instructions are used in the dual instruc-

tion mode, a breakpoint cannot be set on any of the three in-
structions that follow the delayed branch.

i860 Assembler, Linker and Debugger 8-9

4860 Programmers
Reference

This chapter is intended to aid systems programmers in writing

software for, or porting software to, the Hauppauge 4860 family
of MotherBoards. The Hauppauge 4860 provides PC compatible
platforms with two industry standard 1/O busses, the PC/AT bus
(ISA) and the EISA bus.

This draft version of the system programmers reference manual
focuses on describing 4860 specific features. It does not
provide information on programming the industry standard
MotherBoard peripherals such as timer/counters, DMA ports,
etc..

1/O Port Summary (ISA/EISA)

Address ltem Access

OF8H Motherboard Configuration Register Write Only
OF9H Unused

OFAH Unused

OFBH 486 Attention interrupt Read/Write
OFCH 860 Attention Interrupt Write Only
OFDH 860 Configuration Register Write Only
OFEH 860 Interrupt Controller Read/Write
OFFH 860 Interrupt Controller Mask Wirite Only

4860 Programmers Reference 9-1

1/0 Port Summary (EISA ONLY)

Address item Access

COoOH Configuration RAM page register Write Only
800H-8FFH Configuration RAM Read/Write
C80H-C83H EISA ID Registers Read Only

486 Processor Memory Map
00000000H - 03FFFFFF

04000000H - BFFFFFFF
C0000000H - C1FFFFFF
C2000000H - C200FFFF

FCO00000H - FFFFFFFF

Mappable as onboard DRAM,
Expansion RAM, 1/O bus or
BIOS ROM

Expansion RAM, or I/O Bus
Weitek 4167

i860 1/O space

Mappable as onboard DRAM,

Expansion RAM, /O Bus or
BIOS ROM

Note: The state of the keyboard controller output A20 Gate will
affect access to some portions of the 486’s memory space.

860 Processor Memory Map
00000000H - 03FFFFFF

04000000H - BFFFFFFF
CO0000000H - C1FFFFFF
C2000000H - C200FFFF

C2010000H - FBFFFFFF

Mappable as onboard DRAM,
Expansion Ram, I/O Bus or
BIOS ROM

Expansion Ram, or I/O Bus
Weitek 4167

860 I/O Space

Expansion Ram, or I/O Bus

9-2

4860 Programmers Reference

FCO00000H - FFFFFFFF Mappable as onboard DRAM,
Expansion Ram, /O Bus or
BIOS ROM

Note: The state of the keyboard controller output A20 Gate will
NOT affect the 860s memory map.

4860 Frame Buffer Memory Map

C3000000H - C303FFFF Frame buffer memory

C2800000H - C2800018 BT431 Cursor controller

C2400000H - C2400018 BT457 DAC/Palette

C2000000H D1 =Frame Interrupt MASK (Active
LOW)

C2000008H DO =VSYNC (Active LOW)

C2000010H D1 =Frame Interrupt (Active LOW)

4860 MotherBoard Configuration Register
The Motherboard configuration register is an 8 bit write only
register. It is located at /O port 0F8H and contains the following
information:
Bit 0 0 = Disable Mapping RAM

1 = Enable Mapping RAM

Bit 1 0 = Disable writes to Mapping RAM

1 = Enable writes to Mapping RAM
Bit 2 0 = Select 486 cells when writing

1 = Select 860 cells when writing
Bit 3 0 = Normal Parity

1 = Force Parity Error

4860 Programmers Reference 9-3

Bits4 -5 Reserved

Bit 6 0 = Enable Onboard Serial/Parallel Ports
1 = Disable Onboard Serial/Parallel Ports
Bit 7 0 = 486 External Cache Enabled

1 486 External Cache Disabled

In order to allow programs to set and clear individual bits in the
configuration register, a copy of the current configuration
register image is stored in CMOS RAM.

Mapping RAM
The Memory Mapping RAM determines what resource each
processor accesses at a given memory address:

o The Mapping RAM allows each 32K block of the first 64
Megabytes to be enabled as RAM or disabled, allowing access
to off board RAM (64 bit expansion memory or I/O Bus RAM).

« In addition each block may also be marked as cacheable or
noncacheable, and as read/write or read only (write protected).

The same capabilities are provided for the last 64 megabytes of
memory as well.

Each processor (the 486 and the 860) has an independent
memory map allowing each block of memory to be accessible
to the 486, the 860, or both.

The Mapping RAM is 8K bytes, with each byte controlling ac-
cess to 32K bytes of one processor’'s address space (4
Gigabytes of memory is mappable). Each byte in the Mapping
RAM is formatted as follows:

Bit O 0

Block is Read / Write
Block is Read Only (write protected)

—
]

9-4 4860 Programmers Reference

Bit 1 0
1

Block is cacheable

Block may not be cached

Bit 2 0 = Block is fast RAM
1 = Block is slow RAM
Bit 3 reserved (must be settoa 1)
Bit 4 0 = Block has RAM enabled
1 = Block has RAM disabled
Bit 5 0 = Front side of SIMM Module Selected

1 = Back side of SIMM Module Selected
Bits 6 - 7 Bank number of SIMM module pair to select.

for example, if Bits 6 and 7 are both 0, this selects
SIMM Bank 0, sockets U20 and U24.

NOTE: if Bit 4 is 1 (Block does not use on board RAM), Bits 5,
6 and 7 have different definitions:

Bit 5 RESERVED

Bit 6 0 = Access EISA address = > 16 Megabytes
1 = Access EISA address <16 Megabytes

Bit 7 0 = EISA bus

1 = On-board EPROM select

Initial programming of the Mapping RAM is accomplished by:
1) Disable Interrupts

2) Set the Enable Writes bit and the Select 486 bit in the 4860
MotherBoard Configuration Register

3) For each of the 4096 memory blocks, write that blocks’ 486
control word to any memory address within the block it controls
(any write to memory space while the Mapping RAM Writes are
enabled will result in a write to the corresponding mapping RAM

4860 Programmers Reference 9-5

byte)

4) Set the Select 860 bit in the 4860 MotherBoard Configura-
tion Register

5) For each of the 4096 memory blocks, write that blocks’ 860
control word to any memory address within the block it controls

6) Clear the Enable Writes bit and set the Enable Mapping Ram
bit in the 4860 MotherBoard Configuration Register

7) Enable Interrupts

Subsequent changes to the Mapping RAM are accomplished as

follows:
1) Disable Interrupts
2) Set the Enable Writes bit and set or clear the Select 486/860

bit in the configuration register

3) Write the block’s control word to any memory address
within the block it controls

4) Clear the Enable Writes bit in the configuration register
5) Enable Interrupts

Note: Any write to memory space while the Mapping RAM
writes are enabled will result in a write to the mapping RAM.
This includes write generated by DMA or another processor
(hint: turn off DMA and interrupts when programming the Map-
ping RAM).

860 Processor Contiguration Register
The 860 configuration register is an 8 bit write only register. It is
located at I/O port OFDH and contains the following information:

Bits 0 -t Arbiter Mode

9-6 4860 Programmers Reference

Bit 1 Bit 0 Mode

0 0 Fair
1 Priority 486
1 0 Priority 860
1 1 Priority 64-Bit Siot
Bit 2 486 Interrupt Select

0 = Write to 486 Interrupt Register sends external interrupt 13.
1 = Write to 486 Interrupt Register sends NMI.
Bit 3:
0
1

When enabled, 3 I/0 Bus clocks (BCLKs) are inserted for 16-bit
I/O devices, and 11 BCLKs are inserted for 8-bit I/O devices.

Bit 4:

I/0 Command delays inserted

No I/O command delays

0 = EISA I/O READ delayed by one BCLK
1 = No EISA I/O READ delays

Bit 5-6 Reserved

Bit 7:

0 = 860 running

1 = 860 held in reset o L
In order to allow programs to set and clear individual bits in the
configuration register, a copy of the current configuration
register image is stored in CMOS RAM.

860 Processor Interrupt Controller
When the 860 receives an interrupt it can determine the source
or sources by reading the 860 pending interrupt register at 1/O
port OFEH. Each bit in this register indicates a pending interrupt
as follows:
Bit 0 10 system interrupt (level sensitive from

4860 Programmers Reference 9-7

8259)

Bit 1 Timer interrupt (edge sensitive)

Bit 2 860 Attention interrupt (edge sensitive)
Bit 3 Parity interrupt (edge sensitive)

Bit 4 64-bit Expansion Slot interrupt

Bit 5 Unused

Bits 6 - 7 Reserved

Writing to I/O port OFEH allows bits in the pending interrupt
register to be selectively cleared. Writing a one to a bit in port
OFEH clears the corresponding bit in the pending interrupt
register.

The 860 interrupt Mask register is a write-only register at 1/0
port OFFH. This register contains a mask bit for each 860 inter-
rupt. When an interrupt mask bit is set, no 860 interrupt is
generated when the corresponding bit in the pending inter-
ruptregister is set.

Master/NON-Master EISA 1/O Slots

Slots J1, J3-J6 and J8 are capable of supporting Master-mode
EISA boards. Slots J2 and J7 do not support Master-Mode EISA
boards.

EISA Slot Addresses

E!SA slots are encoded to work in certain address ranges when
used with adapter boards using AEN selection. The following ad-
dress ranges apply to the slots on the 4860EISA MotherBoard:

Silot Address Range

J1 10xx, 14xx, 18xx, 1Cxx
J2 20xx, 24xx, 28xx, 2Cxx
J3 30xx, 34xx, 38xx, 3Cxx
J4 40xx, 44xx, 48xx, 4Cxx

9-8

4860 Programmers Reference

J5
J6
J7
J8

50x%, 54xx, 58xx, 5Cxx
60xx, 64xx, 68xX, 6Cxx
70xx, 74xx, 78xx, 7Cxx
80xx, 84xx, 88xx, 8Cxx

Keyboard Controlier Input Port

Bit

Bit

Bit

Bit

Bit

Bit

Bit

Bit

0
1
2

Reserved

Reserved

0 = Turbo switch inactive
1 = Turbo switch active
0
1
0
1

Second Level Cache present
Second Level Cache not present

Expansion RAM card present

Expansion RAM card not present

I

Manutacturing Test jumper installed

Manufacturing Test jumper not installed

Color monitor selected

it

Monochrome monitor selected
= Keyboard Locked

0
1
0
1
0
1 = Keyboard Unlocked

486 Attention Interrupt

Writing to 1/O port OFBH generates either an 8259 interrupt 13

(AT Math Coprocessor error) or an NMI to the 486. Which inter-

rupt is generated is selectable using the 860 Configuration

Register.

When the 486 receives the interrupt it can determine the source
by reading I/O port OFBH and examining bit 0. Bit 0 equal to 1
indicates that the 486 interrupt register generated the interrupt.
Reading port OFBH causes bit 0 to be cleared following the read.

4860 Programmers Reference

9-9

860 Attention Interrupt

Writing to 1/O port OFCH generates an 860 Attention Interrupt.

486 BIOS Special Functions

Master Processor Selection
Memory Detection & Setup
Weitek support
860 support
Setup
Ram Speed
Bus Speed
Shadow Ram
Master Processor
486/860 Ram Allocation
Internal & External Cache Control

860 BIOS Functions

Initialization
486 Detection
Master Processor Selection
POST
Setup
Ram Speed
Bus Speed
Shadow Ram
Master Processor
Internal Cache Control
486/860 Ram Allocation
Bootstrap

9-10

4860 Programmers Reference

Heartbeat demo

UNIX386 80860 ASSEMBLER, Beta Version 2.0, 11-Apr-1989

Tue Dec 26 16:31:58 1989

Page 1

/I This program, when run on a Hauppauge 4860 board with both i486 and i860
// processors, will have the i860 write alternating astericks in the upper right hand
// corner of a Hercules compatible display, while the i486 continues to run DOS. lftis

// loaded from DOS with the Hauppauge utility program LOAD860.

38200000 00000000
38800000 00000004
30000000 00000008

48000430 0000000¢
48000430 00000010
48000430 00000014
48000420 00000018
48000420 0000001¢c
48000420 00000020

edefc200e40f0000 00000024

94100001 0000002¢
0de08080 00000030

6c000022 00000034
20000000 00000038

94100002 0000003¢
0de08080 00000040

a0020000 00000044

O©OONOTOEHEWN =

EEREYL

screen_base = Ox0BOOOO // Hercules screen

screen_offs = 160 -8

delay_count = 1000000

iobase = 0xC2000000

.atmp r31
lext

// initialize control reg
// leave all ints disable

st.c r0,psr
st.c r0,fsr
Id.c fir,r0

// clear pipeline
pfadd.ss
pfadd.ss
pfadd.ss
ptmul.ss 10,f0,f0
pfmul.ss f0,f0,f0
pfmul.ss 10,0,f0

mov iobase, r15
mov 0x01,r16
st.b r16, 0x80(r15)

call flush_cache
nop

mov 0x02,r16
st.b r16, 0x80(r15)

mov r0,r2

// Place to put *
// Delay between *'s

// 860 I/O Space

10,10,f0
fo,f0,f0
fo,f0,fo

/fwrite 01 to port 80h

// make sure we get a miss

/Iwrite 02 to port 80h

Heartbeat Demo

ee52000be4120000 00000048 37 mov screen_base, r18//set up screen

38
94100003 00000050 39 mov 0x03,r16
0de08080 00000054 40 st.b 116, Ox80(r15) //write 03 to port 80h
41
42 loop:
43
6c00000f 00000058 44 call delay
a0000000 0000005¢ 45 nop
46
9410072a 00000060 47 mov Ox072A,r16
0de08080 00000064 48 st.b r16, Ox80(r15)
1408098 00000068 49 st.s r16, screen_offs(r18) I/
94100720 0000006¢ 50 mov 0x0720,r16
1e40809a 00000070 51 st.s 116, screen_offs +2(r18) //space
52
6c000008 00000074 53 call delay
a0000000 00000078 54 nop
55
94100720 0000007¢ 56 mov 0x0720,r16
0de08080 00000080 57 st.b r16, 0x80(r15)
1408098 00000084 58 st.s 116, screen_offs(r18) //space
9410072a 00000088 59 mov Ox072A,r16
1e40809a 0000008c 60 st.s r16, screen_offs +2(r18) In*
61
6bfffff1 00000090 62 br loop

a0000000 00000094 nop

63

64

65

66 delay::
67

68

69

70

9405ffff 00000098 mov -1, 15
ecc6000fe4064240 0000009¢ mov delay_count, r6
b4c02801 000000a4 bla 15, 16, delay_loop
a0000030 000000a8 nop
71
72 delay_loop:
b4df2ftf 000000ac 73 bla 15, 16, delay_loop
a0000000 000000b0 74 nop
75
40000800 000000b4 76 bri r
a0000000 000000b8 77 nop
78
79
80 //The foliowing cache flush procedure is from the i860TM Programmer’s Reference
81 //manual. Please reference this Intel manual for additional information.
82
a0000000 000000be 83 .align .quad
84
85 fiush_cache::

40220000 000000c0
305b0000 000000c4
677b0800 000000c8
9419ffHf 000000cc

6c000008 000000d0
38404800 000000d4

€77b0900 000000d8
6c000005 000000dc
3840d800 000000e0

1770300 0000004
a0410000 000000e8
40000800 000000ec
3840d800 000000f0

e418ffe0 00000014
ef187eff 0000008
841a007f 000000fc
b740c803 00000100
17000021 00000104

a0000000a0000000 00000108

08000000 00000110
b75fctfe 00000114

37000021 00000118
08000000 0000011c

40000800 00000120
1700fe01 00000124

00000128

86
87
88
89
90
a1
92
93
94
a5
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
m
112
113
114
115
116
117
118
119
120
121
122
123
124
125

FLUSH_P = 0x7{000000-32

/irw =124, rx =125, ry=r26, rz =127

mov
Id.c
or
adds
call
st.c

or
cali
st.c

xor
mov
bri
st.c

r1,r2
dirbase,r27
0x800,r27,r27
-1,10,r25
D_FLUSH
127 dirbase

0x900,r27,r27
D_FLUSH
127 dirbase

0x900,r27,r27
r2,r1
r

r27 dirbase

D_FLUSH::
I%FLUSH_P,r0,r24
h%FLUSH_P 24,124

or
orh
or

blia
Id.|

.align

127,r0,r26

r25,r26,D_FLUSH_LOOP

32(r24),10

.quad

D_FLUSH_LOOFP::

ixfr
bla
flush
ixfr

bri
Id.

.end

10, fO

r25,r26,D_FLUSH_LOOP

32(r24) + +
r0, fO

r1
-512(r24),r0

Heartbeat Demo

UNIX386 80860 ASSEMBLER, Beta Version 2.0, 11-Apr-1989
Page 1

Tue Dec 26 16:31:57 1989

/! Program: Reset

// Sets the initial vector to jump to on the 860 processor.

a0000000 00000000
a0000000 00000004

94011000 00000008
40000800 0000000¢
a0000000 00000010

00000014

~

10
11
12

o bwN

nop

mov
bri
nop
13
14

test_addr = OxfHffOO0

text

.align .quad

// two nop's for AQ errata

test_addr, r1
r1

.end

// rom entry address

// jump to test program

Frame Buffer Demo

UNIX386 80860 ASSEMBLER, Beta Version 2.0, 11-Apr-1989

Fri Apr 27 14:28:32 1990

Page 1

/1 This program displays a test pattern on the Hauppauge 4860 Frame Buffer. The i860
// changes pixels in the frame buffer by writing to memory locations in the frame
// buffers memory space, which starts at location VRAM_ADDRESS.

/i

/I This test program will work only with version X.01 of the 64-bit frame buffer.

O ONOOEWN -

iobase = 0xC2000000 /1 860 I/O Spac

/! display resolution

DISPLAY WIDTH = 1280
DISPLAY_LINES = 1024
HORIZ_STRIDE = 2048
VRAM_ADDRESS = 0x03000000
VRAM_SIZE = 4 * 1024 * 1024
VRAM2 = 0x03200000

//Bt457 - Brooktree Pallette DAC address

PALETTE_DAC_ADDRESS = 0x02400000
RED_ADDRESS_PORT = 0x00
RED_PALETTE_RAM_PORT = 0x08
RED_REGISTER_ PORT = Ox10
RED_OVERLAY PORT = Ox18

GREEN_ADDRESS PORT = 0x20
GREEN_PALETTE_RAM_PORT

GREEN_REGISTER PORT = 0x30
GREEN_OVERLAY PORT = 0x38
BLUE_ADDRESS_PORT = 0x40
BLUE_PALETTE_RAM_PORT

BLUE_REGISTER PORT = 0Ox50
BLUE_OVERLAY PORT = Ox58

Ox28

Ox48

B-1

Frame Buffer Demo

DAC_OVERLAY_0 = 0x0
DAC_OVERLAY_1 = Ox1
DAC_OVERLAY 2 = Ox2
DAC_OVERLAY_3 = 0x3
DAC_READ_MASK_REG = Ox4
DAC_BLINK_MASK REG = Ox5
DAC_COMMAND REG = Ox6
DAC_CONTROL_REG = Ox7

I Bt431 - Brooktree Cursor chips
CURSOR = 0x02800000

CUR_ADDRESS 0_PORT = 0x00
CUR_ADDRESS_1_PORT = 0x08
CUR_RAM_PORT = 0x10
CUR_CONTROL_REG_PORT = 0x18
PORTS = 0x02000000

/! Bt439 - Brooktree clock chip
Bt439_reset_port = 0x08

clk_on = 0x00000000
cli_off = 0x00000002

" Frame Buffer Status Ports

I

//[Read Ox00 Bit 0-Buffer Select
//[Read Ox00 Bit 1-Frame Int. Mask
1/

/Mrite 0x00 Bit O-

//Write 0x00 Bit 1-

I

//Read Ox08 Bit 0-Vertical Sync
//Read 0x08 Bit 1-Clock Reset
I

/MWrite 0x08 Bit O-

/MWrite O0x08 Bit 1-Clock Reset
I

/[Read 0x10 Bit 0-Mouse Interrupt
//Read Ox10 Bit 1-Frame Interrupt
i

//Write O0x10 Bit 0 -

//Write 0x10 Bit 1 -

i

B-2

EBBIGR

91
92
93
94
95

97

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

//Read 0Ox18 Bit 0 -

//Read Ox18 Bit 1 -

/

/MWrite 0x18 Bit 0-Buffer Select

[MWrite 0x18 Bit 1-Frame Interrupt Mask
FB_CLK_RST = 0x02

FB_VSYNC = 0x01

FB_Status_Port = 0x08

FB_CLK_RST = Ox02

FB_VSYNC = 0x01

//some colors

RED

GREEN

BLUE

text

/!
/et
/Ir2
/I3
/Ir4
S
/6
i
//r8
/9
/ir10
I/[ah]
/[aV
/M3
/ir4
/15
/ir16
fir17
/ir18
//r19
//r20
/21
/22
/23
/Ir24

0Ob1111110000000000
= 0b0000001111110000
= 0b0000000000001111

Register Usage:

Return Address

Temporary

Unused

Base for accessing 1/O Ports
Base for Frame Buffer Ports
Base for accessing Palette DACs
Base for accessing Cursor
Unused

Unused

Clock OFF Command

Unused

Temporary

Unused

Unused

Unused

Temporary

Temporary

Temporary

Video RAM address pointer
Unused

Unused

Used to store pixel vaiue for RED
Used to store pixel value for GREEN
Used to store pixel value for BLUE

B-3

Frame Buffer Demo

38200000 00000000
38800000 00000004
30000000 00000008

48000430 0000000c
48000430 00000010
48000430 00000014
48000420 00000018
48000420 0000001¢c
48000420 00000020

6c0000fa 00000024
a0000000 00000028

€ca50200e4050000 0000002¢

ecc60240e4060000 00000034

ece70280e4070000 0000003¢

940a0002 00000044
1ca05008 00000048
1ca00008 0000004c

6c000056 00000050
a0000000 00000054

134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
1583
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
m
172
173
174
175
176
177
178
179
180
181
182

/Ir25 Temporary
/ir26 Temporary
/27 Temporary
//r28 Temporary
/129 Temporary
//r30 Temporary
//r31 Temporary

1/

Id$start::

1 initialize control reg
1 leave all ints disable

st.c r0,psr
st.c 0. fsr
Id.c fir,r0

/! clear pipeline
pfadd.ss 10,f0,f0
pfadd.ss f0,f0,f0
pfadd.ss 10,1010
pfmul.ss 10,1010
pfmul.ss 10,f0.f0
pfmul.ss f0,f0,f0

call fiush_cache // make sure we get a miss
nop

mov PORTS,r5
mov PALETTE_DAC_ADDRESS,16

mov CURSOR,r7

I reset Bt439

mov clk_off,r10

st.s r10,Bt439_reset_port(r5)
st.s r0,Bt439_reset_port(r5)
call wait_for_vsync

nop

//at this point vsync just became active

B-4

1ca05008 00000058
1ca00008 0000005¢

6c00005¢ 00000060
a0000000 00000064

6c0000de 00000068
a0000000 0000006¢

94110800 00000070
a6310001 00000074
©e730300e4 130000 00000078
eed60000e416fc00 00000080
941703f0 00000088
9418000f 0000008¢c

a2de0000 00000090
€3deb800 00000094
3dec000 00000098

94120800 0000009¢c
©e730300e4 130000 00000020

1e60f000 000000a8
96730002 000000ac
9652tff 000000b0
525f07fc 000000b4

94120800 000000b8
©e730320e4 130000 000000bc

1e60b800 000000c4
96730002 000000c8
9652fftt 000000cc
525t07fc 000000d0

94120384 000000d4
€e730300e4 130000 000000d8
a01f0000 000000e0

1e60b010 0000004
1e60b012 000000e8
1e60b014 000000ec
1e60b016 0000000
1e60b018 0000004

1e60b820 000000f8

183
184
185
186
187
188
189
190
191
192
193
194
195

197

210
2n
212
213
214
215
216
217
218
219

221
223
224
225
227

230
231

st.s
st.s

call
nop

110,Bt439_reset_port(r5)

r0,Bt439_reset_port(r5)

init_palette_dacs

/iwrite some stuff to VRAM

call
nop

mov
shl

mov
mov
mov
mov

mov
or
or

mov
mov
hline::
st.s
adds
adds
btne

mov
mov
hline1::
st.s
adds
adds
btne

mov
mov
mov
line::
st.s
st.s
st.s
st.s
st.s

st.s

clear_screen

HORIZ_STRIDE,r17
1,117,017
VRAM_ADDRESS,r19
RED,r22

GREEN,r23

BLUE 24

r22,r30
r23,r30,r30
r24,r30,r30

HORIZ_STRIDE,r18
VRAM_ADDRESS, (19

r30,0(r19)
2,r19,r19
-1,r18,r18
r0,r18,hline

HORIZ_STRIDE,r18
VRAM2,r19

r23,0(r19)
2,r19,r19
-1,r18,r18
r0,r18,hline 1

900,118
VRAM_ADDRESS, 19
r0,r31

r22,0x10(r19)
r22,0x12(r19)
r22,0x14(r19)
r22,0x16(r19)
r22,0x18(r19)

r23,0x20(r19)

// pitch

// 130 = white

B-5

Frame Buffer Demo

1e60b822 000000fc
1e60b824 00000100
1e60b826 00000104
1e60b828 00000108

1e60c030 0000010¢c
1e60c032 00000110
1e60c034 00000114
1e60c036 00000118
1e60c038 000001 1¢c

1e60f060 00000120

1e60f100 00000124
1e60f102 00000128
1e60f104 0000012¢
1e60f106 00000130
1e60f108 00000134
1e60f10a 00000138
1e60f10c 0000013¢
1e60f10e 00000140
1e60f110 00000144
1e60f112 00000148
1e60f114 0000014¢

1e600116 00000150

1e60f118 00000154
1e60f11a 00000158
1e60f11¢c 0000015¢
1e60f11e 00000160
1e60f120 00000164
1e60f122 00000168
1e60f124 0000016¢
1e601126 00000170
1e60f128 00000174
1e60f12a 00000178
1e60f12c 0000017¢

a26c0000 00000180
870002 00000184

83ec6000 00000188
1d80f000 0000018¢

82339800 00000190

232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254

256
257

274
275
276

278
279

st.s
st.s
st.s
st.s

st.s
st.s
st.s
st.s
st.s

st.s

/Ist.s
//st.s
//st.s
//st.s

st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s

st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s
st.s

mov
addu
addu
st.s

addu

r23,0x22(r19)
123,0x24(r19)
123,0x26(r19)
r23,0x28(r19)

r24,0x30(r19)
r24,0x32(r19)
r24,0x34(r19)
r24,0x36(r19)
124,0x38(r19)

r30,0x60(r19)
122,2552(r19)
123,2554(r19)
r24,2556(r19)
r30,2558(r19)

r30, 0x100(r19)
r30,0x102(r19)
r30,0x104(r19)
r30,0x106{r19)
r30,0x108(r19)
130,0x10a(r19)
r30,0x10c(r19)
r30,0x10e(r19)
130,0x110(r19)
r30,0x112(r19)
r30,0x114(r19)

r0,0x116(r19)

r30,0x118(r19)
r30,0x11a(r19)
r30,0x11¢(r19)
r30,0x11e(r19)
r30,0x120(r19)
£30,0x122(r19)
r30,0x124(r19)
r30,0x126(r19)
r30,0x128(r19)
r30,0x12a(r19)
r30,0x12¢c(r19)

r19,r12
2,,31,r31
r12,r31,r12
130,0(r12)

r19,r17,r19

/iwhite line
//RED line
//IGREEN line
//BLUE line
/fwhite line

/Hfat white line

//Mlack line

/fat white line

/145 deg. white line

//next line

B-6

281

8652ftft 00000194 282 addu -1,r18,r18
525f07d2 00000198 283 btne rO,r18,line

284
6c000047 0000019¢ 285 call init_cursor
a0000000 000001a0 286 nop

287

288

289 ok:
6bffttff 000001a4 290 br ok
a0000000 000001a8 291 nop

292

293

294 /fwait_for_vsync
295 /Noop until vsync has just become active
296 // and then return

297
298
299 wait_for_vsync::
300
301 /Noop until vsync goes inactive
302
14bc0008 000001ac 303 Ids FB_Status_Port(rs), r28
€79c0001 000001b0 304 and FB_VSYNC,r28, r28
73fttffd 000001b4 305 be wait_for_vsync
a0000000 000001b8 306 nop
307
308 /Noop until vsync goes active
309
310 no_vsync::
14bc0008 000001be 311 ids FB_Status_Port(r5),r28
€79¢0001 000001c0 312 and FB_VSYNC,r28,r28
7bfifttd 000001c4 313 bne no_vsync
a0000000 000001c8 314 nop
315
316 //at this point, vsync just became active
317
40000800 000001ce 318 bri g
a0000000 000001d0 319 nop
320
321
322
323 init_palette_dacs::
a0220000 00000 1d4 324 mov r1, r2
325
941c0004 000001d8 326 mov DAC_READ MASK_REG, r28 //RED
0cc0e000 000001dc 327 stb r28, RED_ADDRESS_PORT(r6)
0cc0e020 0000010 328 stb r28, GREEN_ADDRESS_PORT(r6)
Occ0e040 00000104 329 stb r28, BLUE_ADDRESS_PORT(r6)

B-7 Frame Buffer Demo

941c00ff 000001e8

0cc0e010 000001ec
0cc0e030 00000110
Occ0e050 00000114

941c0005 0000018
0cc0e000 000001fc
0Occ0e020 00000200
0Occ0e040 00000204
0cc00010 00000208
0cc00030 0000020c
0cc00050 00000210

941¢c0006 00000214
Occ0e000 00000218
Occ0e020 0000021¢
0cc0e040 00000220
941c0040 00000224
Occ0e010 00000228
0Occ0e030 0000022¢
Occ0e050 00000230

941c0007 00000234
0cc0e000 00000238
0Occ0e020 0000023¢c
0cc0e040 00000240
0cc00010 00000244
0cc00030 00000248
0cc00050 0000024¢

6c00000d 00000250
a0000000 00000254

0cc00000 00000258
0cc00020 0000025¢
0cc00040 00000260

ef9c0000e4 1¢fc00 00000264

0cc00010 0000026¢
0cc00010 00000270
0cc00010 00000274
0Occ0e010 00000278

a0410000 0000027¢
40000800 00000280
a0000000 00000284

370
371
372
373
374
375
376
377
378

mov
st.b
st.b
st.b

mov
st.b
st.b
st.b
st.b
st.b
st.b

mov
st.b
st.b
st.b
mov
stb
st.b
st.b

mov
st.b
st.b
st.b
st.b
st.b
st.b

call
nop

/finit
st.b
stb
st.b

mov
st.b
st.b
st.b
stb

mov
bri
nop

Oxff, r28

r28, RED_REGISTER_PORT(r6)
128, GREEN_REGISTER_PORT(r6)
128,BLUE_REGISTER_PORT(r6)

DAC_BLINK_MASK_REG, r28
r28, RED_ADDRESS_PORT (r6)
r28, GREEN_ADDRESS_PORT(r6)
r28, BLUE_ADDRESS_PORT(r6)
r0, RED_REGISTER_PORT (r6)

r0, GREEN_REGISTER_PORT 16)
10, BLUE_REGISTER_PORT(r6)

DAC_COMMAND REG, r28
r28, RED_ADDRESS_PORT(r6)
r28, GREEN_ADDRESS_PORT (r6)
r28, BLUE_ADDRESS_PORT(r6)
0x40, 128

r28, RED_REGISTER_PORT (r6)
128, GREEN_REGISTER_PORT(r6)
128, BLUE_REGISTER_PORT r6)

DAC_CONTROL_REG, r28
r28, RED_ADDRESS_PORT (r6)
r28, GREEN_ADDRESS_PORT 16)
128, BLUE_ADDRESS_PORT 16)
r0, RED_REGISTER_PORT (r6)

r0, GREEN_REGISTER_PORT (16)
r0, BLUE_REGISTER_PORT (6)

load_default_palette

overlay colours

10, RED_ADDRESS_PORT (r6)
10, GREEN_ADDRESS_PORT (r6)
r0, BLUE_ADDRESS_PORT (r6)

RED, r28

r0, RED_REGISTER_PORT(r6) //overlay 00
r0,RED_REGISTER_PORT{(r6) //overlay 01
r0,RED_REGISTER_PORT(r6) //overlay 10
r28,RED_REGISTER_PORT(r6) //overlay 11

12, r1
r1

0cc00000 00000288
0cc00020 0000028¢
0cc00040 00000290

a01c0000 00000294
941d0100 00000298

0Occ0e008 0000029¢
Occ0e028 00000220
Occ0e048 000002a4

879c0001 000002a8
539feffb 000002ac
a0000000 000002b0

40000800 000002b4
a0000000 000002b8

1ce00000 000002bc

1ce00008 000002c0

94106464 000002c4
1ce08018 000002c8
94100000 000002cc
1ce08018 000002d0
94100303 000002d4
1ce08018 000002d8
94100000 000002dc
1ce08018 000002e0
94100202 000002e4
1ce08018 000002e8

94100000 000002ec
1ce08018 000002f0
94100000 00000214
1ce08018 0000028
94100000 000002fc
1ce08018 00000300
94100000 00000304

379

407

410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425

load_default_palette::

stb t0,RED_ADDRESS_PORT(r6)
stb r0,GREEN_ADDRESS_PORT(r6)
st.b r0,BLUE_ADDRESS_PORT(r6)

mov 10,r28
mov 256,129
next_colour::

//st.b r28,RED_ADDRESS_PORT(r6)

//st.b r28, GREEN_ADDRESS_PORT(r6)

//stb 128, BLUE_ADDRESS_PORT(r6)
//store colour to palettes

stb r28,RED_PALETTE_RAM_PORT(r6)

st.b r28,GREEN_PALETTE_RAM_PORT(r6)

stb r28,BLUE_PALETTE_RAM_PORT(r6)

addu 1,r28,r28

btne r29, 128, next_colour
nop

bri 8

nop

init_cursor::

// set addreg 0 = 0

sts r0,CUR_ADDRESS_0_PORT(r7)

// set addreg 1 = 0

st.s r0,CUR_ADDRESS_1_PORT(r7)

// two command regs

mov 0b0110010001100100, ré

sts r16,CUR_CONTROL_REG_PORT(r7)
mov 0x0000,r16 // two cursor x low values
st.s r16,CUR_CONTROL_REG_PORT(r7)
mov 0x0303,r16 // two cursor x high values
st.s 116, CUR_CONTROL_REG_PORT(r7)
mov 0x0000,r16 // two cursor y low values
st.s r16, CUR_CONTROL_REG_PORT(r7)
mov 0x0202,r16 // two cursor y high values
st.s r16, CUR_CONTROL_REG_PORT(r7)

mov 0x0000,r16 // two window x low regs

st.s r16, CUR_CONTROL_REG_PORT(r7)

mov 0x0000,r16 // two window x high regs

sts r16, CUR_CONTROL_REG_PORT(r7)

mov 0x0000,r16 // two window y low regs

st.s r16, CUR_CONTROL_REG_PORT(r7)

mov 0x0000,r16 // two window y high regs

B-9

Frame Buffer Demo

1ce08018 00000308

ee 100000e4 10tf 0000030¢
1ce08018 00000314
94101f1f 00000318
1ce08018 0000031¢c

ee 100000e4 10ftff 00000320
1ce08018 00000328
94101f1f 0000032¢c
1ce08018 00000330

94120200 00000334
ee 100000e4 10f0f0 00000338
94110f0f 00000340

1ce08010 00000344
1ce08810 00000348
9652ffHf 0000034¢
525f07fc 00000350

40000800 00000354
a0000000 00000358

94190100 0000035¢
ef5a0001e41a0001 00000360
a01b0000 00000368
efde0300e4 1e0000 0000036¢
941cfftf 00000374

941d009f 00000378
b7a0e001 0000037¢
a3dfo000 00000380

1fe0d801 00000384
11e0d805 00000388
1fe0d809 0000038¢
1fe0d80d 00000390
1fe1d801 00000394
1fe1d805 00000398
1fe1d809 0000039¢
1fe1d80d 000003a0
1fe2d801 000003a4
1fe2d805 000003a8
1fe2d809 000003ac

426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443

445

447

449
450
451
452

457

470
471
472
473
474

sts 116, CUR_CONTROL_REG_PORT(7)

mov Oxffff,r16 // two window width low regs
st.s r16,CUR_CONTROL_REG_PORT(r7)

mov Oox1f1f,r16 // two window width high regs
st.s r16,CUR_CONTROL_REG_PORT({r7)

mov Oxfftf,r16 // two window height low regs
st.s r16,CUR_CONTROL_REG_PORT(r7)

mov Ox1f1f,r16 // two window height high regs

sts r16,CUR_CONTROL_REG_PORT(r7)

/finit cursor pattern
mov 512,r18
mov 0xf0f0,r16
mov 0xOf0f,r17

nextcurpat::
sts r16,CUR_RAM_PORT(r7)
st.s r17,CUR_RAM_PORT(r7)

adds -1,r18,r18
btne r0,r18,nextcurpat

bri 4]
nop

fill_screen::

mov DISPLAY_LINES / 4,r25
mov 0x10001,r26

mov r0,r27

mov VRAM_ADDRESS,r30
adds -1,r0,r28

next_line::

mov DISPLAY WIDTH/8-1, r29
bla 128,r29 fili_line

mov r30,r31

fill_line::

st.l r27,0(r31)

st 127,4(r31)

st 127,8(r31)

st 127,12(r31)

st r27, HORIZ_STRIDE +0(r31)
st r27,HORIZ_STRIDE +4(r31)
st r27,HORIZ_STRIDE +8(r31)
st.l r27,HORIZ_STRIDE + 12(r31)
st 127,2*HORIZ_STRIDE +0(r31)
st r27,2*HORIZ_STRIDE +4(r31)
st 127,2*HORIZ_STRIDE +8(r31)

1fe2d80d 000003b0
1fe3d801 000003b4
1fe3d805 000003b8
1fe3d809 000003be
1fe3d80d 000003c0
870010 000003c4

b7bfe7ee 000003c8
835bd800 000003¢ce

87de2000 000003d0
8739ffft 000003d4
533f07e7 000003d8

40000800 000003dc
a0000000 000003e0

941ctftf 000003e4

efbd0007e4 1dff 0000038
efde02ffe4 1efff8 00000310

b7a0e001 0000038
a0000000 000003fc

b7bte7ff 00000400
2fc00009 00000404

40000800 00000408
a0000000 0000040c

475
476
477
478
479

491
492
493
494
495
496
497

st r27,2*HORIZ_STRIDE + 12(r31)

st r27,3*HORIZ_STRIDE +0(r31)
st r27,3*HORIZ_STRIDE +4(r31)
st r27,3*HORIZ_STRIDE +8(r31)
st.! r27,3*HORIZ_STRIDE + 12(r31)
addu 16,r31,r31

bla r28,r29.fill_line

addu 127,126,127

addu HORIZ_STRIDE * 4,r30,r30
addu -1,r25,125
btne r0,r25,next_line

bri r1
nop

clear_screen::

adds -1,r0,r28

mov VRAM_SIZE/ 8 - 1,r29
mov VRAM_ADDRESS-8,r30

bia r28,r29,ciear
nop

clear::

bla r28,r29,clear

fst.d 0,8(r30) + +

bri 1
nop

510 //The foliowing cache flush procedure is from the 860TM programmer’s reference
$11 //manual. Please reference the manual for additional information.

a0220000 00000410

305b0000 00000414
e77b0800 00000418
9419t 000004 1¢c

6c000008 00000420

512
513
514
515
516
517
518
519
520
521
522
523

flush_cache::
mov r,r2

FLUSH_P = 0x00008000-32

/Irw =r24,rx =125,ry =126, =127

Id.c dirbase,r27
or 0x800,r27,r27
adds -1,r0,r25

call D_FLUSH

B-11

Frame Buffer Demo

3840d800 00000424
€77b0900 00000428
6c000005 0000042¢
3840d800 00000430
f77b0900 00000434

a0410000 00000438
40000800 0000043¢
3840d800 00000440

04187fe0 00000444
ef180000 00000448
e41a007f 0000044¢
171f0021 00000450
a7t0000 00000454

b740¢801 00000458
a0000000 0000045¢

08000000 00000460
b75fctfe 00000464

37000021 00000468
08000000 0000046¢

40000800 00000470
17001e01 00000474

40000000 00000478
a0000000 0000047¢
a0000000 00000480
a0000000 00000484

00000488

524
525
526
827
528

st.c
or

call
st.c
xor

mov
bri
st.c

127 dirbase
0x900,r27,r27
D_FLUSH

127 dirbase
0x900,r27,r27

r2,r
r1
r27 dirbase

D_FLUSH::

or
orh
or
Id.I
shl
bla
nop

.align

1%FLUSH_P, r0,r24
h%FLUSH_P, 124,124
127,r0,r26

32(r24),r31

0,r31,r31
r25,r26,0_FLUSH_LOOP

32

D_FLUSH_LOOP::

ixfr
bia
flush
ixfr
bri
Id.i

nop
nop
nop
nop

.end

r0,f0
125,126,0_FLUSH_LOOP
32(r24) + +

r0,f0

r1
-512(r24),r0

B-12

